

Measuring and Mapping Light Pollution at a Local Scale

MSc. Thesis; Stefan M. Bruehlmann (sb@dentaku.ch) Amsterdam, 20 February 2015

Contents

- 1. Introduction
- 2. Light pollution
- 3. Literature
- 4. Research question
- 5. Research method
- 6. Results & Analysis
- 7. Conclusions
- 8. Applications
- 9. Further research

15 to 20 min. presentation followed by questions

1. Introduction

:

Inquinamento luminoso in Svizzera Pollution lumineuse en Suisse Lichtverschmutzung in der Schweiz

La mappa mostra l'inquinamento luminoso in base alla diminuzione della visibilità delle stelle. Multipare La carte montre la pollution lumineuse sur la base de la diminution de la visibilité des étoiles. Die Karte zeigt die Ausdehung der Lichtverschmutzung anhand der Abnahme der Anzahl sichtbarer Sterne.

> I livelli corrispondono ad una perdita di magnitudine Les niveaux correspondent à une perte de magnitude Die Stufen entsprechen einem Magnitudenverlust (in magnitudini V/en magnitude V):

DARK

Carta inquinamento luminoso / Carte pollution lumineuse / Lichtverschmutzungskarte: - ISTIL - Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Thiene, Italy. Vedi/Voir/Siehe: "Rapporto ISTIL 2001", http://www.lightpollution.it/sitl/rapport.html - Basata su foto satellitari DMSP / Basée sur les photos satellitaires DMSP / Satellitenaufnahmen DMSP - Situazione 1998 / Situation 1998 / Stand 1998 Sovrapposizione Mappa Svizzera / Superposition de la carte Suisse / Überlagerung auf Schweizerkarte: - Dark-Sky Świizerland Sezione Ticino, http://www.darksky.ch/TI

Il numero di stelle visibili si dimezza grossomodo ogni circa 0.6 magnitudini perdute. Le nombre d'étoiles visibles diminue de 50%, environs tous les 0.6 magnitudes perdues. Die Anzahl sichtbarer Steme wird pro ca. 0.6 verlorene Magnitude, auf die Hälfte herabgesetzt.

- Light pollution is a local phenomenon
- Available maps are very coarse and generalized
- There are only a few light pollution maps existing at a local (neighborhood) level

Photo: Stefan M. Bruehlmann

Virtual Earth

Source: Google Earth / Landsat

Lake of Zurich from airplane

Photo: Stefan M. Bruehlmann

2. Light Pollution

Image Landsat

Ø

Google earth

Image © 2014 DigitalGlobe Data SIO, NOAA, U.S. Navy, NGA, GEBCO

2956 m

Light Pollution

Definition | Animation

Illustration : Stefan M. Bruehlmann / adapted from Rensselaer Polytechnic Institute, 2007

Definition:

«that part of light that ends up in the sky and is consequently not for functional use»

Detriment effects

Photo: Jim Richardson

- Health hazards
- Nocturnal insects
- Ecological consequences
- Bird migration
- Consequences for astronomers
- Loss of the night

3. Literature

Influencing studies:

Cinzano et al. (Università di Padova, Italy)

- World Atlas of the Night Sky Brightness
- Using satellite data and modelling techniques
- Large scale

Zamorano et al. (2011) (Universidad Complutense de Madrid)

- Field measurements & ISS image analysis
- Quality of ISS image
- Large scale

Kyba et al. (Freie Universität Berlin)

- Aerial photo survey
- Land use analysis
- Large scale

& several regional studies (Geneva, Hongkong, Japan, ...)

4. Research question

What is a suitable set-up of a **GIS-based model** to produce an upward light emission map at a local scale and what **significance** can the map achieve?

- What are the spatial distribution and the parameters of the light sources?
- What accuracy can the model output reach?
- What are potential advantages and disadvantages of the model?
- What are potential fields of application?

Observation | Measurements | Modelling | Visualization | Validation | Improvement

- Understanding light sources
- Propagation of light

Vector Data

- Measurement equipment
- Measurement strategy
 - Modelling of relevant features
 - Data quality and data processing
 - Reference image
 - Analysis

Research Area

Source: map.geo.admin.ch

Research Area

Source: map.geo.admin.ch

Observation | Measurements | Modelling | Visualization | Validation | Improvement

Motorway

Residential street

Observation | Measurements | Modelling | Visualization | Validation | Improvement

Visual inspection of aerial photos

Category	Interval [m]	Intensity
1. Class A Road	50.0	lux
2. Class 1 Road	30.0	lux
3. Class 2 Road	30.0	lux
4. Class Q Road	30.0	lux
5. Residential Buildings	15.0	lux
6. Industrial Buildings	15.0	lux
7. Train station area	30.0	lux
8. Sports pitch	25.0	lux
9. Parking	20.0	lux
10. Old Town	15.0	lux

Data Input for modelling

Observation | Measurements | Modelling | Visualization | Validation | Improvement

Measurement procedure in the field

Illustration : Stefan M. Bruehlmann

2 Data processing

B Data processing

Vector Base Data

Observation | Measurements | **Modelling** | Visualization | Validation | Improvement

VECTOR25

VECTOR25 reproduces man-made and natural features in a flexible vector format and is especially suitable for applications in geographic information systems (GIS)

Source: swisstopo

Road network Other traffic Primary surfaces Hedges and trees Single objects Railway network Hydrological network Buildings Facilities

Observation | Measurements | **Modelling** | Visualization | Validation | Improvement

Polyline: 'Streets', 'Buildings'

Polygon: 'Parking', 'Sports fields'

Observation | Measurements | **Modelling** | Visualization | Validation | Improvement

• Euclidean Distance

Application of 'lux' and 'spread'

Observation | Measurements | **Modelling** | Visualization | Validation | Improvement

Albedo reflectance

- Asphalt
- Vegetation
- Bare ground

Observation | Measurements | **Modelling** | Visualization | Validation | Improvement

Category	Light points
1. Class A Road	418
2. Class 1 Road	2'097
3. Class 2 Road	6'051
4. Class Q Road	6'518
5. Residential Buildings	67′710
6. Industrial Buildings	2′714
7. Train station area	583
8. Sports pitch	738
9. Parking	601
10. Old Town	1′179
Total	88'609

Observation | Measurements | Modelling | **Visualization** | Validation | Improvement

RGB Aerial photo of Geneva

Source : Ville de Genève

R:248 G:246 B:59 R:198 G:151 B:35 R:137 G:106 B:30 R: 67 G: 48 B:15

Observation | Measurements | Modelling | Visualization | Validation | Improvement

Research area

Source: esa Current ISS position: http://iss.astroviewer.net/index.php

Observation | Measurements | Modelling | Visualization | Validation | Improvement

Source: Google Earth

Source: Light Pollution Model

Source: Light Pollution Model

Modelled: City of Winterthur

Source: Light Pollution Model

Orthophoto: City of Winterthur

Source: swissphoto

Modelled: City of Winterthur

Orthophoto: City center Geneva

0.5 km 0.5 km

Source: Light Pollution Model

Source: Ville de Genève

RGB image 'green band'	Model output achromatic	Intensity classification	Reclassified Value
255	max Lux	high	5
		medium/	'high 4
	•	medium	3
		medium/	′low 2
0	min Lux	low	1

		Model output				
		1	2	3	4	5
	Ч	0	1	2	3	4
ge	2	1	0	1	2	3
RGB image	m	2	1	0	1	2
RG	4	3	2	1	0	1
	ы	4	3	2	1	0

Deviation Class	Description	Pixel count	Pixel [%] of Total
-4	Very high (ISS image is brighter)	80	0.2
-3	high	391	1.1
-2	moderate	1′417	4.0
-1	small	4'996	14.0
0	none	27′012	75.7
1	small	1′240	3.5
2	moderate	388	1.1
3	high	145	0.4
4	Very high (model output is brighter)	4	0.0
Total	-	35′710	100.0

7. Conclusions

7. Conclusions

 Current satellite imagery does not provide a sufficient detail to map light pollution at a local scale.

Source: VIIRS / NASA

7. Conclusions

- Satellite imagery is currently not sufficient for the visualization of light pollution at a local scale.
- A modelled approach proves to be promising.
- Knowledge about the local situation is crucial.
- Dealing with temporal exceptions is an issue.
- Integration of other tools (e.g. Calculux) could be beneficial.

8. Applications

Awareness

Application	Detail
Make the light pollution issue known	Media coverage
Inform the citizens	Layer in Geo-portals

Special interest groups

Application	Detail
Astronomers	Night sky brightness map
Conservationists / Biologists	Input for analysis (example Geneva)

Optimizing light emissions

Application	Detail
Lighting scenarios	Visualize different lighting policies (e.g. LED)
Calculation of energy consumption	Optimize energy use

9. Further research

 Acquire further knowledge on characteristics and spatial distribution of light sources.

Photo: Jim Richardson

 Include a more sophisticated pattern of 'light spread' using specfic light planning tools (e.g. Calculux)

9. Further research (2)

 Enhance model by comparing it to a 'high quality' image from the ISS (or orthophoto)

Source: NASA

 Translate the modelled results into a 'Night Sky Brightness' map

Night Sky Brightness Map (measured with Sky Quality Meter)

Measurements/Cartography: Stefan M. Bruehlmann