

Preferences of Higher Educated Households for Location Characteristics and Housing Types

Jan Möhlmann

Based on joint work with

Jasper Dekkers, Mark van Duijn, Or Levkovich, Jan Rouwendal

VU University Amsterdam

UvA – VU – PBL seminar, 18 March 2014, The Hague

Research strategy

• Estimating household preferences based on revealed preferences

- Differentiating between household types
- Using estimating results to predict effects of scenarios and policy

Structure of presentation

• Sorting model

0

- Data description
- Estimation results
- Scenario analysis
- Conclusions

Sorting model

household population

- Sorting model
- Data
- Results
- Scenario analysis
- Conclusions

 Households choose a region and a housing type based on regional characteristics and household preferences

Input of the model: current housing supply and current

• Which household preferences will lead to the current equilibrium?

- Sorting model
- Data
- Results
- Scenario analysis
- Conclusions

Sorting model

- Core is a multinomial logit model
- Number of alternatives: 472
 - (118 regions x 4 housing types)

- Sorting model

- Data
- Results

- Scenario analysis

- Conclusions

Sorting model

- Core is a multinomial logit model
- Number of alternatives: 472
 (118 regions x 4 beuging two estimations)
 - (118 regions x 4 housing types)
 - Utility of household *i* in alternative *n*: $u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$

Sorting model

Core is a multinomial logit model

- Sorting model

- Data

- Results

- Scenario analysis

- Conclusions

Number of alternatives: 472
 (118 regions x 4 housing types)

• Utility of household *i* in alternative *n*: $u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$

• Probability that household *i* chooses alternative *n*:

$$\pi_{in} = \frac{e^{\pi_{in}}}{\sum e^{\hat{u_{in}}}}$$

11.

- Sorting

model

- Data

- Results

- Scenario

analysis

Endogeneity problem

- Unobserved characteristics influence utility and household prices
- Housing prices
 Accessibility
 Urban amenities
 Nature
 Unobserved characteristics
- Conclusions

Endogeneity problem

 Unobserved characteristics influence utility and household prices

- Sorting model
- Data
- Results
- Scenario analysis
- Conclusions

- Scenario

analysis

- Conclusions

Estimation strategy

• Solution: estimation in two steps

$$u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$$

model

- Data

- Results

- Scenario analysis

- Conclusions

Estimation strategy

• Solution: estimation in two steps

 $u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$

$$\alpha_i = \alpha + \alpha_1 (edu_i - \overline{edu}) \qquad \qquad \beta_i = \beta + \beta_1 (edu_i - edu)$$

$$p_i - p + p_1(eau_i - eau)$$

- Data

- Results

- Scenario

analysis

- Conclusions

Estimation strategy

• Solution: estimation in two steps

 $u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$

$$\alpha_i = \alpha + \alpha_1 (edu_i - \overline{edu}) \qquad \qquad \beta_i = \beta + \beta_1 (edu_i - edu)$$

$$u_{in} = \alpha P_n + \beta X_n + \xi_n + \alpha_1 (edu_i - \overline{edu}) P_n + \beta_1 (edu_i - \overline{edu}) X_n + \varepsilon_{in}$$

- Data

- Results

- Scenario

analysis

- Conclusions

• Step I: estimate α_1 and β_1 and an alternative specific constant (asc = $\alpha P_n + \beta X_n + \xi_n$)

 $u_{in} = \alpha P_n + \beta X_n + \xi_n + \alpha_1 (edu_i - edu) P_n + \beta_1 (edu_i - edu) X_n + \varepsilon_{in}$

 $\beta_i = \beta + \beta_1 (edu_i - edu)$

Estimation strategy

 $u_{in} = \alpha_i P_n + \beta_i X_n + \xi_n + \varepsilon_{in}$

 $\alpha_i = \alpha + \alpha_1 (edu_i - edu)$

• Solution: estimation in two steps

• Step 2: explain the asc's based on characteristics of alternatives using 2SLS

Structure of presentation

- Sorting model
- Data description
- Estimation results
- Scenario analysis
- Conclusions

- Sorting model

- Data

- Results

- Scenario analysis

- Conclusions

Data (households)

 Data are obtained from Woon Onderzoek Nederland (WoON) 2012

• 57,276 households

• Household characteristics

	Mean	Min.	Max.
Couple	0.63	0	1
Children in household	0.35	0	1
Higher education	0.30	0	1
Age	51.7	17	100

Data (regions)

• 118 regions based on 415 adjacent municipalities

- Sorting model
- Data
- Results
- Scenario analysis
- Conclusions

- Sorting model

Data (regions)

• Every region provides four alternatives (rentel houses and three types of owner-occupied houses)

Regional characteristics

- Data					
		Mean	Min.	Max.	
- Results	Distance to nearest 100 000 jobs (in km)	12.6	3.6	37.8	
	Distance to hearest 100,000 jobs (iii kiii)	12.0	5.0	32.8	
	Distance to intercity train station (in km)	7.5	1.5	27.8	
- Scenario analysis	Distance tot highway onramp (in km)	4.1	1.0	20.3	
	Share of surface is nature (in %)	13.8	0.4	65.8	
	Size of historical city centre (in km ²)	0.9	0	13.3	

- Conclusions

• Prices of owner-occupied houses differ by type

Data (regions)

• Price of a standard house is determined using a hedonic price analysis on transaction data

Structure of presentation

- Sorting model
- Data description
- Estimation results
- Scenario analysis
- Conclusions

- Conclusions

WTP by household type

0

• For I km higher proximity to nearest 100,000 jobs

WTP by household type

0

• For detached housing (relative to apartments)

Structure of presentation

- Sorting model
- Data description
- Estimation results
- Scenario analysis
- Conclusions

- Sorting model

- Data
- Results
- Scenario analysis
- Conclusions

Scenario analysis

- Estimated parameters for household preferences allow us to sort a given population of households over the alternatives
- Scenario input:
 - Distribution of household types (e.g. education, age)
 - Regional characteristics(e.g. distance to jobs, nature)
 - Housing supply(distribution between regions and composition of housing types within regions)
- Scenario output:
 - Housing prices
 - Composition of household types for each region

Global economy 2030 scenario

Global Economy scenario

• Example: housing supply in 2030 based on *Ruimte Scanner XL*

- Sorting model 0

- Data
- Results
- Scenario analysis
- Conclusions

- Assumption: number of houses is equal to number of households
- Household demographics and regional characteristics remain constant

Global economy 2030 scenario

Price change of detached housing

Global economy 2030 scenario

Change in share of higher educated households

Structure of presentation

- Sorting model
- Data description
- Estimation results
- Scenario analysis
- Conclusions

Conclusions

characteristics

- Sorting model
- Data
- Results
- Scenario analysis
- Conclusions

• Can distinguish between household types

Sorting model uses revealed preferences to

determine willingness to pay for regional

- We find a positive willingness to pay for proximity to jobs, availability of nature and urban amenities, and for detached housing
- Estimation results can be used to predict the effects of scenarios and policy on housing prices and regional household composition

- Sorting model

- Data
- Results
- Scenario analysis

- Conclusions

- Estimating the sorting model with different characteristics of households and regions
 - foreign knowledge workers and students
 - field of education or profession

Alternative models

- Different level of aggregation (e.g. neighbourhoods instead of municipalities)
- Estimating costs of moving (using distance to previous region)

Preferences of Higher Educated Households for Location Characteristics and Housing Types

Jan Möhlmann

Based on joint work with

Jasper Dekkers, Mark van Duijn, Or Levkovich, Jan Rouwendal

VU University Amsterdam

UvA – VU – PBL seminar, 18 March 2014, The Hague