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Abstract: This paper illustrates the impacts of the scale and shape of spatially aggregated 

data on the analysis of urban development. It explores those impacts on the results of a 

variety of statistics, including multivariate explanatory analyses incorporating driving forces 

acting on different scale levels, and spatial econometric methods. In addition, this paper uses 

existing weighting methods to overcome aggregation effects that are due to uneven portions 

of consumable land in observed areal units. The analyses show that shape effects can be 

partially removed by the used weighting methods, and that even regularly latticed areal 

units need such weighting in practice. In the explanatory analyses, aggregating to coarser 

resolutions does not affect the order of magnitude of estimated coefficients when the 

aggregation process maintains sufficient variance within variables. We argue that small-

sized areal units approximating the size of parcels are to be preferred in urban land 

consumption analyses, because such micro-data allows the exploration of highly local factors 

alongside higher scale linkages. Spatial econometric methods can ease the difficulties with 

replicating the spatial clustering of land uses and the worryingly low levels of explained 

variance that are characteristic of analyses of small-grained land-use data.  
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1 Introduction 

Urban development or the increase in the consumption of land for urban purposes is caused 

by individual choices affecting individual parcels (Irwin et al., 2003). Although urban 

development usually concerns individual properties, urban development is analyzed in a 

variety of areal units that in many cases represent very different spatial delineations. If we 

pick some recent examples, we find that the determinants of urban land consumption have 

been quantified for fine-resolution rasters (Borzacchiello et al. 2010; Loonen and Koomen 

2009; Verburg et al. 2004b), reciprocities between urbanization and infrastructure 

development have been uncovered at the municipality (Koopmans et al. 2012), borough 

(Levinson 2008), residential block and census tracts levels (Xie and Levinson 2010), and the 

factors that determine the location of urban sprawl have been analyzed at the level of 

individual parcels (Irwin and Bockstael 2002) and large zonal units (Irwin et al. 2006). The 

areal units used to analyze urban development thus vary in scale (or size, or resolution), 

which is a property that commonly follows from the decision to incorporate a given number 

of zones; and in shape, which is commonly the result of decisions to amalgamate particular 

predefined areal units in one observation. The usage of aggregated areal units in the study 

of essentially individual entities is either needed to study at a manageable level, or 

intrinsically part of the available data.  

In recent years finer resolution data have become available for analysis, but for several 

reasons it is uncertain if better results may be obtained from them. First, previous studies 

(Irwin et al. 2006; Kok and Veldkamp 2001) have found that much of the variance in small-

grained land-use data remains unexplained by statistical models that incorporate higher-

scale linkages such as distance to city centres, and that the sizes of estimated parameters 

depend on areal unit size. Those findings demonstrate that it is unclear if fine resolution 

data are fit for studying the effects of high-scale linkages on land-use changes, such as urban 

development. Furthermore, also neighbourhood dependencies are scale dependent (Qi and 

Wu 1996) and particularly influential in fine resolution data (Overmars et al. 2003). This 

poses challenges in particular to land use modellers attempting to replicate clustered land-

use patterns on fine resolutions alongside other explanatory variables; for an overview of 

methods to do so we refer to Verburg et al. (2004c). All in all, statistical micro data analyses 

pose additional challenges to the analyst because of the unclear relation with higher scale 

linkages, neighbourhood dependencies and low explained variances, while the outcomes of 

statistical analyses performed on spatially aggregated data depend on the scale and shape 

of the areal units that the data represent. To underpin the choice of areal units and better 

understand the influence that a particular spatial data configuration will have on analysis 

results, this study will address the effect of the scales and shapes of areal units on outcomes 

of urban development analyses.  

The modifiable areal unit problem 

The fact that statistical analysis outcomes depend on the areal units in which the analyzed 

data are aggregated is well known (Arbia 1989; Fotheringham and Wong 1991; Gehlke and 

Biehl 1934; Robinson 1950), and this phenomenon has been named the Modifiable Areal 

Unit Problem (MAUP) by Openshaw (1984). This dependency on the areal units of data 

needs to be carefully separated from the related `ecological fallacy’, which is the fact that 

population characteristics cannot be inferred to be the characteristics of members of that 

population. Gotway and Young (2002) consider the MAUP as a special case of ‘change of 
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support problems’ that come into existence when the spatial representation of variables 

differs from their true spatial characteristics. This is often the result of spatial data 

transformations such as aggregation, interpolation or multiscale modelling. Essentially, the 

MAUP comes into play when the outcomes of processes affecting particular areas are 

aggregated into different, often larger areal units. The influence of spatial aggregation can 

be divided into scale and shape or zonation effects, that respectively refer to “the variation 

in results obtained from the same statistical analysis at different levels of spatial resolution” 

and “different results arising from the regrouping of zones at a given scale” (Kwan and 

Weber 2008; p. 111). It is commonly associated with irregularly sized areal units such as 

census tracts or postcode areas, but it is just as persistent in regularly latticed data, in which 

the arbitrary and modifiable aspects of unit delineation commonly follow from technical 

specifications (e.g. sensor resolution, satellite trajectory) instead of zone design principles.  

The influence of the MAUP on statistical outcomes has been studied repeatedly. Arbia 

(1989) argues that the influence of the MAUP on univariate properties such as averages, 

standard deviations and spatial autocorrelation can be reduced, so that distortions because 

of shape effects are minimized and the influence of scale effects is predictable. Arbia 

furthermore argues that the influence of the MAUP becomes more predictable if the 

analysed areal units are perfectly equivalent in terms of size, shape and neighbourhood 

structure. Amrhein and Reynolds (1997) add that results of the Getis statistic of spatial 

association change in a relatively stable manner when changing scale. Previous analyses 

have demonstrated that the influence of the MAUP on correlation coefficients and 

multivariate analyses may be worse. As Robinson (1950) and Openshaw (1984) show, when 

correlating the same variables in different sets of spatial units the resulting coefficients can 

even change in sign. Others conclude that the effects of the MAUP on multivariate analyses 

are “essentially unpredictable” (Fotheringham and Wong 1991; p. 1042). Amrhein (1995) 

and Briant et al (2010) nuance this and demonstrate that model specification has a larger 

influence on multivariate analysis than spatial data configuration.  

Because of its possible impact on statistical outcomes, the MAUP has been the concern of 

many previous contributions, in which strategies to overcome its implications have been 

proposed. Some have suggested to use optimal zoning schemes (Openshaw 1984), but such 

an approach is inherently troublesome because any definition of what constitutes an 

optimal design is likely to be subjective. Others analyse data that describe the entities that 

constitute the process, for example by modelling land-use change on the parcel level (Chakir 

and Parent 2009), but unfortunately sufficient data is not always available for such an 

exercise. Furthermore, individual entities can be hard to define, for example when analysing 

densities (Fotheringham 1989). Another proposition is to abandon statistical methods that 

are affected by spatial aggregation  and instead apply methods that are ‘frame-

independent’ (Tobler 1989). For an overview of available methods we refer to Gotway and 

Young (2002). However, it seems like a last resort measure to discard the current methods, 

and all the work that has been put in their development. Therefore a number of studies 

have tried to find the sensitivity of commonly applied statistical tests for the MAUP 

(Amrhein 1995; Briant et al. 2010; Fotheringham and Wong 1991).  

Aims 

This paper adds to previous analyses of the sensitivity of results for the MAUP by describing 

the influence of spatial data configuration on the results of urban land consumption 
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analysis. The overall aim is to provide recommendations on choosing aggregation levels of 

spatial data for urban land consumption analyses, and methods to cope with the influence 

of aggregation when areal unit choices are not available. With regard to scale effects, 

emphasis is put on the interplay between estimated impacts, spatial autocorrelation and 

explained variance. Similar to Briant et al. (2010), we attempt to reduce scale effects by 

including explanatory variables that address driving forces at different scale levels. With 

regard to shape effects, emphasis is put on weighting methods that may be used to 

counterbalance those differences in consumable land supply that are inherent to irregular 

and also regularly sized areal units. We use fine resolution data of residential land-use 

shares in the Netherlands to compare the univariate properties of residential land-use 

shares, and results of bivariate correlations and multivariate regressions. To assess scale and 

shape effects those dependent data are averaged into varying sizes and shapes. This choice 

to aggregate by averaging is not trifle. Data properties such as averages and standard 

deviations are known to be less sensitive to the MAUP in case of aggregation by averaging; 

furthermore, the MAUP is less substantial in cases where all data are aggregated similarly 

(Arbia 1989; Briant et al. 2010). To understand how spatial data configuration affects 

analysis results, it is important to understand how spatial autocorrelation in the data is 

affected by scale effects in particular. This will therefore be the subject of the next section. 

2 Spatial autocorrelation and areal unit size 

According to Legendre, spatial autocorrelation “may be loosely defined as the property of 

random variables taking values, at pairs of locations a certain distance apart, that are more 

similar (positive autocorrelation) or less similar (negative autocorrelation) than expected for 

randomly associated pairs of observation” (Legendre 1993; p. 1659). It is symptomatic of 

non-random spatial distributions of observed phenomena and thus poses conceptual and 

technical challenges to spatial analysts. Using spatial econometric methods in explanatory 

analyses (Anselin 2001; Anselin 2003; LeSage and Fischer 2008), spatial autocorrelation can 

be accounted for alongside other factors or as a global level of correlation between 

residuals of neighbouring observations. 

Land uses commonly exhibit considerable positive autocorrelation (Chakir and Parent 2009; 

Hsieh et al. 2000; Irwin and Bockstael 2002; Loonen and Koomen 2009; Overmars et al. 

2003; Verburg et al. 2004a; Verburg et al. 2004b). Hsieh et al. (2000) attribute positive 

spatial autocorrelation in urban development to spatial spillovers of population growth, 

while Overmars et al. (2003) attribute spatial autocorrelation in land-use patterns to 

otherwise unobserved factors, such as social relations or land-use agglomeration benefits. 

We expect that positive spatial autocorrelation in urban land use is caused by many factors 

all at once; and that it indicates underlying spatial processes that interact locally with either 

the environment or proximate spatial processes. In the case of residential land use, the 

interactions that cause spatial autocorrelation may consist of unobserved neighbourhood 

amenities, economies of scale in building larger residential blocks, the preference of house 

seekers for moving to places in the vicinity, scale benefits of clustered residences for local 

services or the preference of planning authorities for large scale zoning.   

Levels of spatial association and autocorrelation are known to decrease when aggregating to 

more sizeable areal units (Amrhein and Reynolds 1997; Arbia 1989; Hong Chou 1991; Qi and 

Wu 1996), but why? When the data at hand observes individual entities, all 

interdependence is captured. Under aggregation the interdependence between two 
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administrative zones that are commonly applied in spatial analysis. The different sets of 

regular lattices only differ in their origins that (compared to the one original lattice) are 

moved north-westerly 25 and 50 percent of the cell width. The resolutions of these lattices 

resemble either resolutions (the 100 m and 1 km resolutions) that are common in land-use 

models (Agarwal et al. 2002; Pontius et al. 2008), or the average areas of used zone units 

(the coarser resolutions).  

Table 1: Applied spatial data configurations. For raster units ranges of n are produced 

because counts of units vary with origin choice. 

Raster units N Zone units N 

100 m.* 3,438,279   

1 km.** 36,534 – 36,585   

2 km. 9,519 - 9,548  Neighbourhoods 11,473 

4 km. 2,524  - 2,550 Urban districts 2,530 

10 km. 465 – 474 Municipalities 484 

20 km. 137 – 138   

30 km. 65 – 70 Corop+ regions 52 

All data configurations are examined in all analyses except: * not in explanatory models; ** 

explanatory model is based on random sample of 8,823 observations 

 

The aggregations performed in this study cause that the studied observations are no longer 

linked with individual processes that act on individual residential parcels. Those parcels are 

820 m
2
 on average in the Netherlands

1
 (Kadaster 2008). This implies that even fine 

resolution data such as a 1 km raster can group more than 1,000 individual processes.  

3.2 Methods 

Weighting methods are used to overcome shape effects that exist because of unevenly sized 

areal units. We have found that the applied weighting methods reduce shape effects in 

statistical findings. We weight both zone units and raster units for the amount of 

consumable land in the unit. Despite their even sizes, raster units are weighted because the 

edges of the study area are quite capricious, which causes differences in the average shares 

of relevant area covered by rasters. Larger raster units in particular can entail large portions 

of sea or exterior lands, which makes these units sensitive to shape effects.  

Weighting is based on the comparative amount of suitable land in an areal unit, which is 

�� � �
�
����� �
�∑ �
�
������⁄ . The applied weighting is similar to Robinson’s method 

(1956). We are aware of Arbia’s (1989) alternate method to compute weighting values. 

Arbia’s weighting values supposedly perform slightly better in spatially autocorrelated data, 

but we expect that the performance improvement possible with those weights does not 

justify the greatly increased complexity involved in computing them. We are, furthermore, 

aware that area weighting methods do not cancel out all effects of spatial aggregation on 

bivariate and multivariate statistics (Arbia 1989; Thomas and Anderson 1965), but we find 

that, in our particular case, area weighting does reduce the overemphasis that these 

analyses put on those individual process-entities that are captured in the smaller units of 

unevenly sized aggregation schemes.  

                                                      
1
 This includes the parcels of apartment blocks and rental corporations. Both have multiple houses on one 

parcel. 
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Let �� denote the value of a variable in an areal unit i. Then, weighted averages are 

computed as ������ � 	∑ ����� ∑ ���⁄  and standard deviations as 

��� � 	�∑ ��� ��� −	����	 ∑ ���⁄ . Weighted Pearson correlation coefficients (rS) are 

computed as shown in equation (1). 

�� � 	 ����� − ���������� − �������
�∑ ��� ��� −	���������∑ ��� �� −	�������� 

(1) 

As an indication of spatial autocorrelation we apply Moran’s I (Moran 1950). We weight 

Moran’s I so that: 1) neighbours j with a larger suitable surface have more weight in defining 

the level of spatial association between an observation i and its neighbours j; and 2) 

observations i with a larger suitable surface have more weight in defining the global 

measure of spatial autocorrelation. The weighted Moran’s I (MIS) is computed as in 

equation (2).   

��� � 	 � ∑ ����
∑ ∑ ���� ����

	∑ ∑ ���� ���� ��� −	�������!�� −	������"
∑ ������ −	���������

 
(2) 

Where  �� � 1 when i and j are neighbours,  �� � 0, otherwise.  

To explore the influence of spatial aggregation on explanatory analyses we compare an 

Ordinary Least Squares model (OLS) with the outcome of a spatial error model (SEM). 

Lagrange multipliers diagnostical tests such as documented in Anselin (2005) demonstrated 

that a spatial error model is more suited for our particular data sets than a spatial lag 

model
2
. The models explaining the distribution of residential land use densities Y in spatial 

units i take the form of equations (3.1 – 3.2). 

%��:	�� � 	'0 + '1�1� + '2�2� +⋯+ 	'+�+� +	,� (3.1) 

���:	�� � 	'0 + '1�1� + '2�2� +⋯+ 	'+�+� +	,�;	 (3.2) 

and in the SEM model ,� � . ��,� + /  

In the SEM model the error term , of observation i consists of an independent and 

identically distributed (i.i.d.) disturbance term μ and the impact of spatially adjacent 

residuals in j. Following Anselin (2001), (3.2) can be rewritten to: 

�� � 	. ���� + 	'+�+� − . ��'+�+� + /.	 (3.3) 

We will use the latter form to compute predicted values Y after the model has been 

estimated, in order to compare accuracies of the OLS and SEM models. To obtain land-

supply weighted estimates in the OLS and SEM models, we apply an exogenous constant 

with values ��1/� and multiply all exogenous inputs with the same values. This weighting 

method is thus equal to estimating by means of weighted least squares, in which 

∑����� −	��3�� is minimized
3
.  

In the SEM model, spatial autocorrelation is located in the error term that affects the 

outcomes of OLS estimations (Anselin 2001; p. 11). We interpret ε as the representation of 

unobserved variables that are subject to spatial dependence. The spatial dependency 

                                                      
2
 Results of the diagnostical tests are available upon request. 

3
 Weighting was not an available option in the spatial econometrics module of the used software (STATA), and 

we therefore resort to these prior computations. 
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between error terms is defined by spatial weight matrix  ��, which in this exercise is based 

on the queen’s model of contiguity (Cliff and Ord 1981; p. 247). We limit this matrix to first 

order neighbours because, in reverence of Tobler’s first law of geography (Tobler 1970; p. 

236), we expect that the most proximate observations in �� correlate most with ��.  
3.3 Selected variables 

In the correlation tests and the explanatory analyses a set of variables is applied that aims to 

capture the most important driving forces acting at different scale levels. The variables 

relate to local phenomena such as airport noise and transport mode proximity (distance to 

stations and motorway exits), and regional aspects such as spatial plans (new towns), 

restrictions (buffer zone and green heart) and economic opportunity (job access). All 

variables, although referring to different factors, are described by detailed 100 metre 

resolution rasters that allow aggregation to higher scale levels. Table 2 lists the most 

important characteristics of the variables and describes how they are aggregated. 

Continuous variables are aggregated by averaging, dichotomous values by predominance. 

Table 2 includes the standard deviations of the values of explanatory variables when 

aggregated into a coarser raster unit, which indicates the amount of local variance of that 

data. Variables with over average internal standard deviations have higher local variance, 

indicating that these variables represent phenomena with smaller geographic extents.  

Table 2: Variable characteristics 

Variable Computed as Aggregated by Min Average Max Internal st. dev. 

Station 

distance log(km) Averaging -2.996 1.761 3.600 0.300 

Motorway exit log(km) Averaging -2.996 1.561 3.729 0.298 

Job access see equation (4) averaging 0.028 0.320 1.000 0.003 

Exterior 

proximity 0/1 predominance 0 0.207 1 0.006 

Airport noise 0/1 predominance 0 0.013 1 0.004 

Buffer zone 0/1 predominance 0 0.019 1 0.007 

Green heart 0/1 predominance 0 0.066 1 0.003 

New town 0/1 predominance 0 0.021 1 0.005 

Note: presented statistics are for the 100m raster resolution. Internal standard deviation is computed as the 

standard deviation of values at the 100m resolution within 1000m zones, averaged in all 1000m zones. 

 

As indicators of ease of access we apply the natural logs of distances to nearest railway 

stations and motorway exits. Previous work demonstrates that the likelihood of built up 

land first increases and then decreases with distance to such transport system terminals 

(Borzacchiello et al. 2010), but such subtleties only hold on spatial resolutions finer than 

those applied in this study. More straightforward relations between the dependent and 

natural logs of distances are therefore imposed. 

As an indicator of economic opportunity a potential accessibility indicator, job access, is 

applied. The used measure is similar to population potentials (Warntz 1964) or market 

potential (Briant et al. 2010). It can be interpreted as the number of jobs one can reach, 

with a fuzzy definition of what is reachable (Geurs and Ritsema van Eck 2001). In a seminal 

paper potential accessibility is found to positively affect the intensity of urban development 
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(Hansen 1959). Our measure is calculated as in equation (4) and subsequently spatially 

interpolated; for more details see (Jacobs 2011).  

�� �	4
5�

�6�� +	6���
7

�81
 

(4) 

Where 5� is the number of job opportunities in zones j and 6��  is the road travel time 

between municipalities j and locations i. 6� is a municipality specific additional travel cost to 

observe the intrazonal distribution of job opportunities. Ceteris paribus, the applied 

distance decay function explained the most variance in residential land use shares when 

fitting it in the later presented regression analyses. For the sake of interpretation, the 

accessibility levels in this study have been rescaled in such a manner that the maximum 

accessibility is 1 in any spatial data configuration. 

Exterior proximity indicates whether areal units are predominantly within 10 kilometres of a 

national border and so proxies the barrier effect that national borders have on economic 

interaction (Cheshire and Magrini 2008; Rietveld 2001).  

A number of spatial policy indicators are applied that, except airport noise contours, are all 

based on administrative units. The airport noise contours indicate if an observation is in an 

area where airport noise is present and urban development is restricted. The buffer zone 

and green heart policy variables indicate whether areal units are predominantly in areas 

with severe restrictions on residential land-use development. The related policies have been 

considerably successful in the preservation of open space (Koomen et al. 2008). Lastly, the 

new town policy variable indicates if an areal unit is predominantly within municipalities 

that have been assigned residential development incentives by national planning 

authorities. These new town policies have positively affected Dutch urban development 

(Verburg et al. 2004b).  

We must acknowledge that the presented models simplify the studied relations. Variables 

such as job access are applied exogenously, while there are more complex dependencies 

between, for example, the spatial distributions of residential areas and employment centres 

(Batey and Madden 1999; De Graaff et al. 2008), and human activities and infrastructural 

developments (Koopmans et al. 2012; Levinson 2008; Wegener and Fürst 1999). We assume 

that the lack of completeness in model specification is not problematic in our case as we 

focus on uncovering scale and shape effects and not so much on providing an in-depth 

analysis of the process of residential development. 

4 Results 

This section starts by demonstrating how spatial pattern properties of residential land-use 

shares are affected by spatial aggregation. Subsequently we discuss how spatial aggregation 

affects the results of bivariate correlation tests and multivariate explanatory analyses.  

4.1 Spatial pattern properties 

In general, the behaviour under aggregation of average values and standard deviations of 

land-use shares in our analysis confirms Arbia’s results (Arbia 1989). Table 3 shows that the 

weighted average residential land use-shares (������) are unaffected by aggregation as was the 

case in Arbia’s analyis. Note that not-weighted averages from the same data (table 7, 

appendix II) vary from 0.06 to 0.30, indicating the importance of weighting. The weighted 
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standard deviations decrease monotonically under aggregation, showing that local variation 

is dampened by spatial aggregation. The zone units have consistently higher weighted 

standard deviations than their equivalent raster scales. This indicates that these zone units 

have a higher internal homogeneity. Apparently, the underlying design principle of the used 

zonal units is to achieve relatively homogenous units (e.g., cities or towns), which causes an 

additional shape effect next to the influence of uneven sizes. This impact of the deliberate 

shaping of the zonal units is also apparent in the decidedly fatter tails of residential land-use 

share histograms for these units; see figure 6 in appendix I. 

Table 3: Properties of residential land-use shares aggregated to raster and zone data. For 

raster units ranges of results are produced because counts of units vary with origin choice. 

Raster  

units (n) 

Weighted 

average (sd) 

Weighted 

Moran's I 

 Zone 

 units (n) 

Weighted 

average (sd) 

Weighted 

Moran's I 

100 m. (3,438,279) 0.07 (0.24) 0.82    

1 km. (~36,500) 0.07 (0.17) 0.45    

2 km. (~9,500) 0.07 (0.13) 0.38 to 0.39  Neighbourhoods (11,467) 0.07 (0.18) 0.55 

4 km. (~2,500) 0.07 (0.10) 0.36  Urban districts (2,529) 0.07 (0.12) 0.42 

10 km. (~470) 0.07 (0.06) 0.37 to 0.41  Municipalities (483) 0.07 (0.07) 0.35 

20 km. (~140) 0.07 (0.05) 0.42 to 0.47    

30 km. (~70) 0.07 (0.04) 0.41 to 0.52  Corop+ regions (52) 0.07 (0.05) 0.46 

 

The impact of spatial aggregation on Moran’s I can be seen in table 3 and figure 2. We find 

that, with fewer observations, the values of Moran’s I from rasters with differing origins 

deviate more. The weighting method does reduce these deviations, so that in all but the 

coarsest resolution, values of Moran’s I deviate much more without weighting. We interpret 

the effect of changing origins on values of Moran’s I as the result of higher uncertainty with 

smaller sample sizes. We furthermore find that in particular fine resolution zonal data have 

higher levels of Moran’s I than comparable raster data. This is presumably caused by the 

higher internal homogeneity of fine resolution zonal units and the higher density of these 

zones in highly populated areas. These two characteristics of the applied zone units make 

that, if a city consists of multiple units of observation, zonal inner-city units more often 

border units with similar values, which results in higher levels of Moran’s I.  

 

Fig. 2 Moran's I coefficient of residential land-use shares under aggregation. 
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We furthermore find that Moran’s I decreases monotonically under aggregation up to 

regional levels, but increases again at coarser resolutions. Such an increase of Moran’s I 

contradicts Arbia’s expectations (1989) and previous empirical results (Hong Chou 1991; Qi 

and Wu 1996) and is not easily explicable. For a better understanding we visualize clustering 

patterns with the local indicators of spatial associations (LISA) method (Anselin 1995). The 

results in figure 3 demonstrate sporadic spatial associations at the municipality level, while 

at the coarser Corop+ level the main urban areas in the west and the peripheral northeast 

become identifiable as related regions (in terms of habitation). This unexpected increase in 

spatial autocorrelation might be due to the specific regional urbanization patterns in the 

Netherlands. The western part of the country is characterised by a concentration of cities at 

relatively short distances from each other that upon aggregation reveal the relatively 

densely populated urban agglomeration known as the `Randstad’, while the northeast 

consists of fewer cities that upon aggregation become dominated by the relatively large 

low-density areas surrounding them.  

 

Fig. 3 Significant clustering of residential land-use shares in the Netherlands according to a 

LISA analysis at municipality (left) and Corop+ level (right). The Corop+ level shows 

substantial clusters of high and low land-use shares in respectively the west and 

northeast.  

4.2 Bivariate correlation coefficients 

We compute ��-weighted Pearson correlation coefficients between residential land-use 

shares and the selected variables (see table 4). Proximity to the exterior and observed 

residential densities are uncorrelated, which contrasts the distinct barrier effect that 

national borders are expected to have on economic opportunities and urban growth. 

Correlations with accessibility indicators and new town policies are positive as was 

expected. Paradoxically, in most cases restrictive policies are positively correlated with 
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residential land-use densities, indicating that these restrictions are imposed where housing 

demand is high.
4
  

Table 4: Pearson correlation coefficients of residential land-use shares and individual 

explanatory variables under aggregation (blank in case of insufficient variation in a 

variable). For raster units ranges of results are produced because counts of units vary with 

origin choice. 

Spatial units (n) 

Station 

distance 

Motorway 

distance 

Job access Exterior 

proximity 

Buffer zone Green Heart  Airport 

noise 

New town 

100 m. (3,438,279) -0.26 -0.14 0.16 0.00 -0.04 0.03 0.01 0.07 

1 km. (~36,500) -0.35 -0.20 to -0.19 0.23 0.00 -0.02 0.04 0.02 0.09 to 0.10 

2 km. (~9,500) -0.41 -0.25 0.29 0.00 0.00 to 0.01 0.05 to 0.06 0.02 to 0.03 0.12 

4 km. (~2,500) -0.49 to -0.48 -0.33 0.38 -0.01 to 0.00 0.03 to 0.05 0.08 to 0.09 0.03 to 0.05 0.12 to 0.14 

10 km. (~470) -0.53 to -0.52 -0.44 to -0.42 0.52 to 0.54 -0.01 to 0.02 0.05 to 0.11 0.11 to 0.19 0.06 to 0.15 0.03 to 0.07 

20 km. (~140) -0.53 to -0.50 -0.47 to -0.45 0.63 to 0.65 -0.06 to 0.00  0.08 to 0.38 0.30 to 0.31 -0.07 

30 km. (~70) -0.49 to -0.44 -0.41 to -0.35 0.66 to 0.71 -0.02 to 0.05  0.05 to 0.47   

Neighb. (11,467) -0.35 -0.21 0.21 0.00 -0.03 0.04 0.02 0.09 

Districts (2,529) -0.45 -0.30 0.32 0.00 0.01 0.06 0.06 0.14 

Municip. (483) -0.55 -0.44 0.48 0.00 0.05 0.11 0.07 0.22 

Corop+ (50) -0.66 -0.59 0.66 -0.03 0.11 0.21 0.08 0.17 

 

Both scale and shape effects are apparent in the presented bivariate correlation 

coefficients. In most cases, correlation coefficients become larger
5
 at coarser resolutions. 

The differences are substantial: most correlation coefficients become at least twice as large 

under aggregation. To explain this, we will look deeper into the effects of aggregation on 

correlation results in the subsequent section. Shape effects are apparent in the different 

sizes of correlation coefficients for comparable zone and raster units. However, weighting 

has greatly reduced those shape effects. Without weighting, the correlations with job access 

range from 0.48 to 0.74 in 30km rasters and Corop+ regions, and correlations with exterior 

proximity range from -0.14 to 0.06 in raster units and from -0.06 to -0.15 in zone units: see 

table 8 in appendix II. Even with weighting there are differences between raster and zone 

units. We link these differences to the second shape effect that exists because areal units 

share delineations with the studied entities and so entail data with higher internal 

homogeneity. This shape effect is most clearly demonstrated by the correlation coefficients 

of new town policies. These policies are defined at the municipality level, which makes that 

in both correlated variables the studied entities share delineations with the areal unit. As a 

result, new town policies are notably more correlated with residential land-use shares in 

case of municipal averages, than in case the data are aggregated to any other areal unit set. 

Here, higher degrees of internal homogeneity caused by the second shape effect seem to 

lead to overemphasised bivariate associations.  

                                                      
4
 As areal units get larger, the results for correlation coefficients become sensitive to the choice of origin in the 

system of spatial units. This result is similar to what we found for Moran’s I coefficient in Figure 2. 
5
 We describe absolute sizes of correlation and regression coefficients, so that larger has the meaning of 

‘farther from zero’. 
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The variance of correlation coefficients under aggregation is related to spatial 

autocorrelation in the associated processes (Arbia 1989; Openshaw 1984). Spatial 

autocorrelation, and bivariate associations of residential land-use shares and job access, 

may interplay on different resolutions, which we explore with a line profile of the associated 

variables on the neighbourhood and Corop+ levels (figure 4). At the Corop+ level the 

averaged land-use shares are smoothed and gradually increasing when job access increases, 

but at the neighbourhood level this smoothed pattern is replaced by spikes.  

 

Fig. 4 Line profile of residential land-use densities and job access aggregated to 

neighbourhoods and Corop+ regions. In the chart (left) the Y axis indicates distance from 

the origin of the profile line, and the X axis indicates values of both residential land-use 

densities and job access. The map (right) indicates the position of the line profile in the 

Netherlands. 

It is immediately clear that job access is far less associated with residential land-use share at 

the neighbourhood level, and as the previously presented correlations on the 

neighbourhood level show, the same goes for the other variables used in this study. In 

contrast, we have seen that levels of spatial autocorrelation are higher at the finer 

resolution of neighbourhood zones, so that we presume a trade-off between spatial 

autocorrelation and bivariate associations when changing areal unit sizes. To invoke the 

analogy of spectral densities (Curry 1966) the spiked pattern at low resolutions represents 

`short wavelength processes’ that are filtered out by large areal units; where many variables 

in the correlation tests lack sufficient local variation, spatial autocorrelation picks up the 

`short wavelength’. The result of aggregating to larger units is that the data are smoothed 

into representing only the results of higher wavelength processes, with which the correlated 

variables are more associated. As shown in the next section, multivariate analyses can 

account for both short and long wavelength processes, and such analyses may therefore be 

less susceptible to scale effects than correlation tests.  
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4.3 Multivariate analyses 

We separately assess how choice of areal units affects model accuracy, spatial lag effects 

and other coefficients in multivariate analyses. To keep the computational tasks 

manageable the 100m scale is excluded and the 1km scale model is only fitted to a sample 

of the data.  

Table 5: Explained variance and levels of spatial autocorrelation in model residuals (λ). For 

raster units ranges of results are produced because counts of units vary with origin choice. 

Areal units (n) R
2
 OLS Pseudo-R

2
 SEM λ 

1 km. (9,766) 0.32-0.33 0.98-0.99 0.79* 

2 km. (9,548) 0.37-0.38 0.94 0.63*-0.64* 

4 km. (2,550) 0.52-0.53 0.91-0.93 0.59*-0.62* 

10 km. (465) 0.71-0.73 0.87-0.89 0.52*-0.55* 

20 km. (137) 0.82-0.84 0.87-0.97 0.53*-0.74* 

30 km. (65) 0.84-0.88 0.81-0.93 0.41*-0.64* 

Neighbourhoods (11,467) 0.25 0.96 0.64* 

Districts (2,529) 0.43 0.92 0.56* 

Municipalities (483) 0.69 0.74 0.44* 

Corop+ regions (52) 0.86 0.35 0.23 

Note: all spatial lag coefficients indicated with * are significant at the 0.05 level, other coefficients 

not. 

As a measure of explained variance we present R
2
 values of the fitted models

6
.  We thus find 

that the SEM model clearly explains more variation in land-use shares at fine resolutions 

than the OLS model; see table 5. Note that when zones are very small, Moran's I is high and 

also lambda is high. In this case it is clear that by taking into account observations on 

neighbouring zones one can achieve a high level of precision when predicting the dependent 

variable in a particular zone. This explains the large difference between the (pseudo) R2 

values of the OLS and SEM models when lambda is high. The results of estimating spatial 

autocorrelation in the error term are plotted in figure 5. Those results show that, similar to 

values of Moran’s I, the effect of spatial autocorrelation in the error term changes 

unpredictably under aggregation, particularly in the case of rasters (cf. figures 2 and 5).  

                                                      
6
 SEM R

2
 values are calculated by computing equation (3.3) with the estimated parameters and subsequently 

squaring the correlation between observed and estimated values of the dependent.  
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Fig. 5 Values of λ of the SEM model under aggregation. Raster results with similar counts 

are from rasters with different origins. 

Table 6 presents estimated constant terms and coefficients of our explanatory analysis. If 

anything, the results demonstrate the strong `self-reinforcing’ (Verburg et al. 2004b; p. 137) 

tendencies of human settlement. Such self-reinforcing tendencies show in the effects of 

spatial autocorrelation, job access and station distance that all indicate that residential land 

use is more likely where people have better interaction opportunities with others. 

Motorway exit proximity wavers between insignificant positive and negative effects. Its 

estimated effect apparently suffers from ambiguity: although the environs of highways are 

unattractive for housing, the ease of access provided by motorway exit proximity increases 

attraction. Exterior proximity has a significant positive effect, presumably because other 

variables underestimate cross-border interaction opportunities. The effects of airport noise 

contours on residential land-use densities are mostly insignificant. From the estimated 

effects of incorporated land-use policies follows that these have had substantial success. 

Thus, the restrictive green heart and buffer zone policies have significant negative, and new 

town incentives significant positive effects on residential land-use shares.  
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Table 6: Coefficients of the estimated multivariate regression analysis. The last column 

expresses the correlation of the estimated coefficients with the number of observations, 

while the last row indicates the average difference between OLS and SEM coefficients. 

  1 km. 2 km. 4 km. 10 km. 20 km. 30 km. Neighb. Distr. Muncp. Corop+ 
Aggr. 

trend 

  (9,766) (9,548) (2,550) (465) (137) (65) (11,467) (2,529) (483) (52)  

C
o

n
st

. OLS 0.06* 0.11* 0.11* 0.08* 0.03 -0.01 0.15* 0.13* 0.11* 0.10 0.48 

SEM 0.12* 0.18* 0.15* 0.09* 0.03 0.00 0.09* 0.13* 0.10* 0.11* 0.62 

S
ta

t.
 

d
is

t 

OLS -0.08* -0.06* -0.05* -0.04* -0.02* -0.02 -0.07* -0.06* -0.04* -0.04* -0.90 

SEM -0.13* -0.09* -0.08* -0.04* -0.02* -0.03* -0.06* -0.06* -0.05* -0.05* -0.88 

M
'w

a
y

 e
x

it
 

OLS 0.01* 0.00 -0.01 0.00 0.01 0.02 0.00 -0.01 -0.01 0.00 -0.17 

SEM 0.03* 0.01 0.00 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.01 0.39 

Jo
b

 

a
cc

. 

OLS 0.32* 0.18* 0.16* 0.14* 0.15* 0.16* 0.17* 0.17* 0.16* 0.14* 0.67 

SEM 0.31* 0.14* 0.15* 0.16* 0.19* 0.17* 0.11* 0.12* 0.19* 0.13* 0.30 

E
x

t.
 

p
ro

x
. 

OLS 0.02* 0.02* 0.02* 0.02* 0.02* 0.03* 0.02* 0.02* 0.02* 0.03* -0.80 

SEM 0.01 0.01 0.01 0.02* 0.02* 0.03* 0.01 0.01 0.02* 0.03* -0.91 

B
u

ff
. 

Z
o

n
e

 OLS -0.12* -0.06* -0.04* 0.06   -0.10* -0.06* -0.03 0.04 -0.86 

SEM -0.20* -0.12* -0.07* -0.02   -0.10* -0.08* -0.08* 0.03 -0.95 

G
re

e
n

 

H
rt

. 

OLS -0.06* -0.05* -0.04* -0.03* -0.04* -0.05* -0.04* -0.05* -0.04* -0.04 -0.46 

SEM -0.05* -0.04* -0.04* -0.03* -0.08* -0.06* -0.03* -0.05* -0.06* -0.04 0.44 

A
ir

p
. 

N
o

is
e

 

OLS 0.00 -0.02 0.00 0.05*   -0.02 0.01 0.01 0.00 -0.29 

SEM -0.01 -0.05* -0.05* 0.03   -0.04* 0.00 -0.02 -0.01 -0.48 

N
e

w
 T

o
w

n
 

OLS 0.11* 0.07* 0.05* 0.04 -0.04  0.06* 0.06* 0.07* 0.04 0.72 

SEM 0.05* 0.06* 0.05* 0.05* -0.04  0.03* 0.03 0.08* 0.06 0.34 

λ
 

SEM 0.79* 0.64* 0.62* 0.55* 0.74* 0.64* 0.64* 0.56* 0.44* 0.23 0.53 

Average 

diff. 
0.03 0.03 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.94 

Note 1: all coefficients are significant at the 0.05 level, unless indicated as: * not significant at 0.05 level. Blank 

spaces indicate coefficients that could not be estimated due to insufficient variation of the variable.  

Note 2: For the 1km. raster a sample of the observations is taken. The aggregation trends are computed with 

the log of number of observations, with the 1km resolution set to 36,534 observations. 

Note 3: because of space limitations, for each scale the results of only one set of rasters are presented. Varying 

origins does not affect the order of magnitude of estimated coefficients; results are available upon request.  

 

The bottom row of table 6 shows the influence of model specification (OLS versus SEM) on 

estimated coefficients by listing the average absolute difference in coefficient of the 

different models per set of areal units. These ranges demonstrate that particularly with fine 
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resolutions, the specification of the used models (OLS versus SEM) has a limited influence on 

the estimated coefficients. Parallel with the decreasing effect of lambda, the differences 

between estimated coefficients become smaller when aggregating to coarser resolutions. In 

the utmost right column of table 6, the aggregation trends computed as correlations 

between coefficient size and ln(number of observations) demonstrate that estimation 

results for some variables (e.g. station distance, buffer zone policies) are strongly associated 

with resolution. This demonstrates that with several of the applied variables, scale has a 

rather monotonous effect on coefficient size. Where coefficients vary unexpectedly, the 

differences in coefficient size are relatively small. Changes in coefficient sign, which possibly 

are the most troublesome of scale effects, are rare, and occur mostly if estimated effects 

vary around zero (such as motorway exit proximity) or have almost insufficient variance due 

to the aggregation process (such as new town and buffer zone policies at coarse 

resolutions). We conclude that the multivariate analysis yields very similarly sized 

coefficients for a wide range of resolutions if sufficient variance in variable values is 

maintained after aggregation. Correcting for spatial autocorrelation provides a higher 

explanatory power but, in this case, provides similar coefficients. Shape effects still are 

visible in the results; for example when comparing the coefficients estimated on 30km 

rasters and Corop+ zones. However, when comparing the results in table 6 with table 9 in 

appendix II, it is clear that weighting has decreased the impact of shape effects here.  

5 Conclusion 

This paper demonstrates to what extent statistically analyzing urban land consumption is 

impacted by the scales and shapes of aggregated areal units. To do so, residential land-use 

shares are averaged into regularly and irregularly shaped areal units of various sizes. In all 

our statistical computations, the observations are weighted to remove the biases that 

originate from variations in the amount of consumable land that the areal unit represents. 

Scale effects are subsequently quantified by comparing results from different resolutions 

and shape effects by comparing results obtained from zone units, and raster units with 

varying origins. The degree to which spatial data aggregation influences multivariate 

analysis results is limited when the analyzed data has positive spatial autocorrelation and all 

variables are aggregated similarly (Amrhein, 1995; Briant et al, 2010). We expect that the 

aggregation methods and the properties of the data used in this analysis are representative 

for many other urban land consumption analyses, and we therefore expect that the 

conclusions in this study are useful to better understand the impacts of spatial aggregation 

in similar studies.  

5.1 Scale effects 

Altering the sizes of areal units causes monotone increases or decreases in most results of 

univariate and multivariate analyses, but sometimes causes unexpected changes in the 

results of correlation tests and levels of spatial autocorrelation. Essentially, aggregating to 

coarser resolutions smooths over local variation in the spatial distribution of urban land use, 

so filtering out processes with `wavelengths’ smaller than the size of the aggregated areal 

units (Curry 1966). This smoothing dynamic makes that the estimated effects of typically 

local factors (such as station distance) decrease and loose significance at coarser 

resolutions. Vice versa, urban patterns have more variance on a fine resolution than the 

explanatory factors that are accounted for can likely incorporate. Higher levels of spatial 

autocorrelation and much higher shares of explained variance at a fine resolution 
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demonstrate that the otherwise unobserved variance in neighbouring observations can 

proxy such small-grained variance. This implies that spatial econometric methods are 

especially needed when using such data. Next to the well documented econometric 

arguments for using such methods (see Anselin 2001; Lesage and Fischer 2008), 

incorporating neighbourhood dependencies likely increases the often disappointingly low 

share of explained variance of models using small-grained data (Irwin et al. 2006; Kok and 

Veldkamp 2001). Those methods furthermore give modellers a powerful method, for 

example by using (3.3), to obtain plausible clustered patterns when predicting spatial 

patterns with empirically estimated parameters. 

Our multivariate regression results indicate that a model that incorporates explanatory 

variables referring to driving forces at different scales is able to account for small-grained 

variations, as well as overarching regional differences. The results of this study underpin 

Briant et al. (2010) that such a model is less susceptible to scale effects. In fact model 

specification turns out to be more influential than the exact choice of statistical analysis 

method (OLS or SEM). That results depend more crucially on model specification confirms 

previous findings (Amrhein 1995; Briant et al. 2010). We conclude that the areal units that 

approximate individual parcels the most are to be preferred for multivariate urban 

development analyses, because the data in such units are able to inform of processes on the 

widest range of ‘wavelengths’. Our results demonstrate that aggregation does not 

drastically affect findings when data are aggregated; thus, if the research question deals 

solely with regional level variables, more aggregate data can be used. However, analyzing 

coarse resolution data will clearly not capture the potentially large impacts of `short 

wavelength’ factors such as spatial dependence or proximity to transport nodes on urban 

land consumption.  

5.2 Shape effects 

We find that the regrouping of areal units affects statistical outcomes in two ways. A first 

shape effect exists because areal units vary in geographical size, or observed relevant area. 

Such varied sizes cause that equal amounts of space, and the entities that relate to that 

space, are not treated with equivalent weight in statistical tests. This is particularly 

problematic if the objective is to analyze the consumption of land, as is commonly the case 

in urban development analyses. Weighting methods such as applied in this paper can greatly 

reduce this bias, as has been demonstrated before (Arbia 1989; Robinson 1956). The second 

shape effect exists because the delineations of irregular areal unit schemes (such as 

postcode areas or administrative units) may be related to the studied individual entities, 

which causes that such data may have a structurally higher internal homogeneity than their 

regularly latticed counterparts. In regular lattices, the event that the delineations of areal 

units separate homogenous entities is less probable, and regular lattices are therefore to be 

preferred as a basis for urban development analysis. We discovered a feature of rasters that 

nevertheless is unattractive and that did not yet receive systematic attention in the 

discussion of this issue. The choice of a reference point for a raster will strongly affect the 

outcome of the analysis. In the case of small spatial units this effect will be negligible, but as 

shown in table 2 and figure 2, it may affect outcomes of analyses to some extent when 

raster resolution is coarse. This holds true in particular in irregularly shaped study areas, 

since these irregular shapes will strongly affect the weight of spatial units near borders. 
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Appendix I: distribution of residential land uses in areal units 
 

Figure 6: distribution of residential land-use share values in the spatial data configurations 

used in the explanatory analysis. 
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Appendix II: results of statistics in paper when data are not weighted 

Table 7: Properties of unweighted residential land-use shares aggregated to raster and 

zone data. For raster units ranges of results are produced because counts of units vary 

with origin choice. 

Raster units Mean (sd) Moran's I Zonal units Mean (sd) Moran's I 

100 m. (3,438,279) 0.07 (0.24) 0.91   

1 km. (~36,500) 0.07 (0.16 to 0.17) 0.69   

2 km. (~9,500) 0.07 (0.13) 0.63 to 0.64 Neighb. (11,467) 0.30 (0.33) 0.69 

4 km. (~2,500) 0.06 (0.10) 0.60 to 0.62 Urban dist. (2,529) 0.20 (0.26) 0.71 

10 km. (~470) 0.06 to 0.07 (0.07) 0.62 to 0.63 Muncp. (483) 0.10 (0.10) 0.49 

20 km. (~140) 0.06 to 0.07 (0.05 to 0.08) 0.42 to 0.68   

30 km. (~70) 0.06 (0.05 to 0.06) 0.40 to 0.61 Corop+ (52) 0.10 (0.07) 0.60 

 

Table 8: Unweighted Pearson correlation coefficients of residential land-use shares and 

individual explanatory variables under aggregation (blank in case of insufficient variation 

in a variable). For raster units ranges of results are produced because counts of units vary 

with origin choice. 

Spatial 

units 

Stat. 

dist. 

M’way 

dist. 

Job 

acc. 

Ext. 

Prox. 

Buff. 

zone 

Green 

 Hrt. 

Airp. 

noise 

New 

town 

100 m.  -0.26 -0.13 0.16 0.00 -0.04 0.03 0.01 0.07 

1 km.  -0.36 to -0.35 -0.20 to -0.20 0.23 to 0.24 -0.01 to -0.01 -0.02 to -0.02 0.04 to 0.05 0.02 to 0.02 0.09 to 0.10 

2 km.  -0.42 to -0.41 -0.26 to -0.25 0.29 to 0.29 -0.02 to -0.01 0.00 to 0.01 0.06 to 0.06 0.02 to 0.03 0.12 to 0.12 

4 km.  -0.48 to -0.47 -0.34 to -0.32 0.37 to 0.38 -0.03 to -0.02 0.02 to 0.06 0.08 to 0.10 0.03 to 0.05 0.12 to 0.13 

10 km.  -0.54 to -0.42 -0.46 to -0.33 0.44 to 0.52 -0.08 to 0.00 0.03 to 0.08 0.12 to 0.15 0.06 to 0.12 0.05 to 0.07 

20 km.  -0.55 to -0.16 -0.49 to -0.09 0.32 to 0.65 -0.14 to 0.06 0.02 to 0.32 0.14 to 0.24 -0.04 

30 km.  -0.49 to -0.34 -0.42 to -0.29 0.48 to 0.66 -0.03 to 0.06 0.05 to 0.31 

Neighb.  -0.40 -0.20 0.29 -0.07 -0.09 0.02 -0.01 0.12 

Urban dist.  -0.53 -0.28 0.34 -0.06 -0.07 0.01 -0.01 0.19 

Muncp.  -0.55 -0.38 0.43 -0.06 -0.02 0.08 0.05 0.31 

Corop+  -0.80 -0.67 0.74 -0.15 0.11 0.25 0.03 0.38 
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Table 9: Coefficients of the estimated unweighted multivariate regression analyses. The last column 

expresses the correlation of the estimated coefficients with the number of observations. while the last row 

indicates the average difference between OLS and SEM coefficients. 

  1 km. 2 km. 4 km. 10 km. 20 km. 30 km. Neighb. Districts Muncp. Corop+ Corr. 

    (9,766) (9,548) (2,550) (465) (138) (70) (11,467) (2,529) (483) (52)   

C
o

n
st

. 

OLS 0.06** 0.11** 0.11** 0.08** -0.06 0.03 0.28** 0.24** 0.14** 0.13* 0.42 

SEM 0.13** 0.18** 0.16** 0.08** -0.07 0.03 0.39** 0.31** 0.14** 0.13* 0.61 

S
ta

t.
 

D
is

t.
 OLS -0.08** -0.06** -0.05** -0.04** -0.02 -0.03 -0.12** -0.13** -0.06** -0.06** -0.57 

SEM -0.13** -0.09** -0.08** -0.04** -0.01 -0.03 -0.12** -0.15** -0.06** -0.06** -0.80 

M
'w

a
y

 

e
x

it
 OLS 0.01** 0.00 0.00 0.00 0.04* 0.02 0.01** 0.01 -0.01 0.00 -0.18 

SEM 0.03** 0.01* 0.00 0.00 0.04* 0.02 0.01 0.02 -0.01 -0.01 0.18 

Jo
b

  

a
cc

. OLS 0.31** 0.17** 0.15** 0.15** 0.22** 0.12** 0.40** 0.31** 0.19** 0.16** 0.64 

SEM 0.26** 0.13** 0.14** 0.18** 0.24** 0.12** 0.32** 0.28** 0.21** 0.16** 0.46 

E
x

t.
 

P
ro

x
. OLS 0.02** 0.02** 0.02** 0.02** 0.03* 0.03* 0.03** 0.05** 0.02 0.04* -0.32 

SEM 0.01 0.01 0.01 0.02** 0.02 0.03* 0.01 0.03 0.01 0.04* -0.70 

B
u

ff
. 

Z
o

n
e

 

OLS -0.12** -0.06** -0.03* 0.00 
  

-0.30** -0.17** -0.06** 0.02 -0.69 

SEM -0.19** -0.12** -0.07** -0.02 
  

-0.30** -0.18** -0.09** 0.01 -0.84 

G
re

e
n

 

H
rt

. OLS -0.06** -0.04** -0.04** -0.05** -0.07 0.01 -0.09** -0.10** -0.05** -0.04 -0.50 

SEM -0.03* -0.03** -0.04** -0.07** -0.08 0.01 -0.07** -0.09** -0.05** -0.04* -0.14 

A
ir

p
. 

N
o

is
e

 

OLS 0.00 -0.02 -0.01 -0.01 0.05 
 

-0.05* -0.01 0.01 -0.03 -0.38 

SEM -0.01 -0.05** -0.06** -0.05 0.05 
 

-0.05 -0.01 -0.02 -0.03 -0.38 

N
e

w
 

T
o

w
n

 

OLS 0.10** 0.07** 0.05** 0.00 
  

0.11** 0.16** 0.14** 0.05 0.54 

SEM 0.04* 0.06** 0.05** 0.01 
  

0.05* 0.13** 0.14** 0.05* 0.24 

λ
 

SEM 0.79** 0.64** 0.63** 0.50** 0.33** -0.12 0.63** 0.61** 0.43** 0.22 0.88 

Average diff. 0.04 0.03 0.02 0.02 0.01 0.00 0.03 0.02 0.01 0.00 0.83 

Note 1: all coefficients are significant at the 0.05 level unless indicated as: * not significant at 0.05 level. Blank 

spaces indicate coefficients that could not be estimated due to insufficient variation of the variable.  

Note 2: For the 1km. raster a sample of the observations is taken. The aggregation trends are computed with 

the log of number of observations with the 1km resolution set to 36.534 observations. 

Note 3: because of space limitations, for each scale the results of only one set of rasters are presented. Varying 

origins does not affect the order of magnitude of estimated coefficients; results are available upon request.  

 

 


