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ABSTRACT  

This master thesis analyzed the driving forces determining locational urban growth and their regional 

differences. Analysis was performed with an automated stepwise regression. The main purpose was to 

find a parsimonious model that describes the relationship between the urban pattern in 2010 and several 

driving forces. The results showed that the number and types of drivers influencing urban growth differ 

per continent. Furthermore, the same drivers can have both a positive and a negative influence on urban 

growth in different continents. The secondary research aim was to further investigate possible 

methodological approaches to improve the predictive power of the models. Therefore, a penalized 

regression was performed that tries to create a parsimonious model in exchange for an acceptable 

amount of bias. The stepwise and penalized logit regression models were compared to a random forest 

model, to see if the complex relationship between driving forces and urban growth would be better 

described with a non-linear model. The results of this thesis suggest that a regional differentiation of 

driving forces is urgently needed for global urban growth models. Furthermore, additional economical 

and political drivers are needed to understand recent urban development and predict future urban 

growth. Finally, the application of non-linear models has shown great potential and should be 

investigated further. 
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1 INTRODUCTION  

The share of the world’s population living in urban areas – including cities, towns, and suburbs - has 

increased from 30 to 55 percent between 1950 and 2018, due to ongoing urbanization (United Nations, 

2018). As a result, urban areas have been rapidly expanding in space and will continue to do, as the 

population is expected to grow by another 700 million people in the next ten years (United Nations, 

2019). Over the last decades, the spatial extent of urban areas has grown even faster than their respective 

populations, indicating an increased demand for urban land per capita (Angel et al., 2011; Seto et al., 

2011). While urbanization has driven economic growth and human development (United Nations, 

2018), it has also had a severe impact on the global environment. A few of these often irreversible 

environmental impacts are loss in biodiversity, air pollution, and even climate alterations, such as the 

urban heat island effect (Grimm et al., 2008; K.C. Seto, Güneralp and Hutyra, 2012). Additionally, 

urban expansion has increased the exposure of humans to natural hazards, as most urban development 

occurs in areas of high risk, such as river deltas (Seto, 2011; Neumann et al., 2015).  

Due to the double-edged nature of urbanization, much research has been devoted to understanding and 

modeling the driving forces of urban expansion (Li, Sun and Fang, 2018). A thorough understanding of 

the processes at play is fundamental to promoting the sustainable development of cities and designing 

effective policies regarding environmental protection and natural hazards. So far, most studies on urban 

expansion have focused solely on individual cities or smaller regions with high data availability, often 

in developed countries (Poelmans and Van Rompaey, 2010; Li, Zhou and Ouyang, 2013). Even though 

the driving forces identified in those individual studies seem to vary a lot, as of yet, no studies exist that 

explicitly compare regional differences in driving forces on a global scale. A small number of global 

studies on driving forces of urban expansion exist. However, they do not account for regional 

differences and often only use a limited number of drivers, due to computational difficulties and a lack 

of global high-resolution data (Seto et al., 2011; Güneralp, Güneralp and Liu, 2015). A global 

assessment of urban growth is not only necessary for data sparse regions, but also for the evaluation of 

international policies such as the Paris agreement. Regionally specific estimates of driving forces can 

make a vast contribution to improved global urban expansion models (Huijstee et al., 2018).  

To fill this research gap, this study’s main objective is to analyze the effect that different drivers have 

on the spatial growth of urban areas and the difference in relevance and magnitude of those drivers 

between regions around the globe. Driving forces of urban expansion will be analyzed on a high spatial 

resolution with grid cells of 1x1 km. Such a fine resolution is in line with recent global land-use models 

and necessary to model larger as well as smaller urban clusters (Li et al., 2017). There is also a need 

for urban growth forecasts on a fine resolution for local hazard impact assessments (Nussbaumer et al., 

2014; Promper et al., 2014). The second aim of this study is to produce results that can be implemented 

in global modes that predict futurfoe urban growth, e.g., Huijstee et al. (2018). Therefore, in the second 
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part of the analysis, emphasis is placed on the methodological approach that can make the best land-

use predictions on new data. Different logistic regression models with an autoregressive specification, 

as well as a non-linear model will be compared based on goodness of fit and predictive power. This 

second aim includes differentiating between relevant drivers and model performance for urban growth 

within a shorter time-period, and the presence of urban sites as a result of millennia of urban 

development. If the end goal is to model future urban growth, identifying the essential drivers of recent 

urban growth could be more relevant than identifying those of historical growth. 

The master thesis is composed of six chapters, including this introduction. Chapter two focusses on the 

theory and empirical data relevant to this study. Theoretical concepts to be discussed are urban 

agglomeration economies, drivers of urban growth, and background on statistical methods for land-use 

change analyzes. The empirical background will focus mostly on studies of different continents and 

their respective drivers of urban growth. The third chapter goes into detail on the methodological 

approach, including a description of the data applied. The methodology section is followed by a 

presentation of the research findings, primarily focusing on the regression results for the different 

continents. In the fifth chapter, the results of the analyzes will be discussed and compared to findings 

from the literature reviewed in chapter two. The focus of the results will first be on the regional 

differences between driving forces and, in the second part, shift to the varying performances of different 

regression models. Finally, chapter six provides a summary of the main results as well as suggestions 

for further research.   

2 THEORETICAL AND EMPIRICAL BACKGROUND  

From a theoretical viewpoint, most economic concepts relevant to this study belong to the broad field 

of geographical economics. The central tenet of this discipline is that the distribution of cities across 

space, or in a broader sense, the concentration of economic activity, is not random. Relevant concepts 

from the field will be discussed in section 2.1. Not all driving forces of urban expansion and the 

magnitude and direction of their effect can be identified solely based on theory. Therefore, empirical 

studies on land-use change, especially studies focusing on driving forces behind urban expansion, will 

be discussed in section 0 of this chapter.   

Before examining the empirical evidence, the concept of driving forces in relation to urban growth will 

be further defined in section 2.2. For this study, an important distinction is made between forces that 

merely drive the growth of cities and those that determine the suitability of a spatial unit to become 

urbanized. In this study, more emphasis will be put on identifying the latter. Section 2.3 includes a 

theoretical background on statistical methods used for urban growth studies, including a description of 

binary logistic regression models and penalized regressions.  
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2.1 Urban agglomeration economies   

In economics, the clustering of firms and people in cities, and the associated increased productivity of 

firms within these cities, is known as urban agglomeration economies or increasing urban returns. 

Agglomeration is a well-known empirical phenomenon that has been studied for several decades by 

geographers and regional scientists (Glaeser et al., 1992; Ciccone and Hall, 1996; Melo, Graham and 

Noland, 2009).  

In general, there are two causes of agglomeration; ‘first nature’ agglomeration causes, which are 

predetermined advantages due to physical geography, often referred to as ‘regional endowments’. 

Examples of regional endowments are productive soils on relatively flat terrain, which form a good 

combination for profitable agricultural production. Another example is proximity to navigable 

waterways, which guarantees efficient transportation and associated trade connections. Apart from 

these first nature causes, there are second nature causes of agglomeration, which refer to the circular 

causality between firms and consumers. Producers choose their location based on the existing market 

and hence choose a location where other producers and consumers are already settled (Brakman et al., 

2005). After only a few firms have decided to settle at a specific geographic location, the circular 

causation between firms and consumers causes the growth of most cities to be self-sustaining (P. R. 

Krugman, 1991). First nature causes may have influenced the initial location of cities as we know them 

today, but second nature causes played a considerable role in their persistence and growth. Although 

both types of agglomeration should be taken into account when selecting drivers of urban expansion, 

second nature causes might be more predictive of future growth than first nature causes. 

The fundamental microeconomic principles of urban agglomeration, which are used by many well-

known economists (e.g., Krugman (1991), Porter (1990)) to explain the spatial clustering of economic 

activity, originate from the work of Alfred Marshall (1842-1924). Marshall defined three leading causes 

of urban agglomeration and associated increasing returns to scale, namely knowledge spillovers, labor 

market pooling, and the possibility of sharing and connecting local inputs. Since Marshall published his 

work in 1920, many empirical studies have proven the existence of these urban agglomeration benefits 

and their effect on city growth.  

Apart from the three sources of agglomeration benefits defined by Marshall (1920), more recent studies 

have used additional channels to explain the spatial distribution and size of cities. These additional 

sources of urban agglomeration are natural advantages (first nature agglomeration causes), rent-seeking, 

the home market effect, and so-called consumption opportunities (Rosenthal and Strange, 2004). Even 

with recent advances in the theory of urban agglomeration forces and years of empirical research, 

Rosenthal and Strange (2004) have concluded that the empirical relevance of the individual drivers of 

urban agglomeration is not always clear, which emphasizes the relevance of this study. Being aware of 

agglomeration benefits is extremely important in this study’s context, to identify relevant drivers and 
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deal with specific methodological issues such as the endogeneity of selected rivers, which will be further 

discussed in section 2.3.4.   

2.2 Driving forces: Quantity versus location  

For this study, it is crucial to specify the kinds of driving forces of urban growth we are interested in. 

A general distinction can be made between driving forces of the quantitative change of urban areas on 

the one hand, and driving forces of the locational or physical change of urban areas on the other 

(Veldkamp and Lambin, 2001). With regards to the prospective quantity of urban land needed, 

population and GDP growth are assumed to be the main determinants (Batisani and Yarnal, 2009; Seto 

et al., 2011; Seto, Güneralp and Hutyra, 2012), together with an increased need for land-based 

commodities (Veldkamp and Lambin, 2001). An increasing number of people born in urban areas and 

increasing wealth lead to an increased demand for urban land. Although both drivers roughly indicate 

how much new urban land is needed, no spatially-explicit projections can be made.  

This study aims to identify drivers that affect the physical land-use change from non-urban to urban 

land, which is why this study will only focus on driving forces that influence the spatial location of 

urban growth. These drivers of locational change help us identify locations that are most likely to be 

urbanized due to the increased quantity of urban land needed. The results of this study can be used in 

combination with models on the quantitative change of urban areas to model future urban land-use 

change. Throughout this thesis, the following terminologies are used interchangeably to describe 

driving forces of locational change: ‘driving forces’, ‘determining factors’, ‘drivers’.  

Driving forces of physical urban growth have been a central theme within the research field of land-use 

change modeling over the last few decades (Veldkamp and Lambin, 2001). By analyzing state-of-the-

art research on driving forces, Bürgi, Hersperger and Schneeberger (2005) have been able to identify 

five main groups of driving forces: cultural, natural, political, economic and technical driving forces. 

Figure 1 shows the five groups of drivers and their relationships in a framework developed by 

Hersperger and Bürgi (2007). This classification of drivers broadly corresponds with other 

classifications made in similar studies discussed in section 2.4, e.g., Verburg et al. (2004), Li, Sun and 

Fang (2018) or Aguayo, Wiegand, Azócar, Wiegand, & Vega (2007).  

 
Figure 1 | Conceptual framework for the five groups of driving forces by Hersperger and Bürgi (2007)  
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2.2.1 Five groups of driving forces   

The first group of drivers contains natural drivers and drivers from the current spatial configuration. 

Natural drivers generally correspond to the first nature agglomeration benefits described in section 2.1. 

Although natural drivers have a less direct effect on urban growth, they have a significant role to play 

when it comes to allocation (e.g., soil type or distance to navigable rivers) (Verburg, Schot, et al., 2004). 

Because of this property, natural/ spatial configuration drivers are depicted in Figure 1 as a physical 

background on which the other drivers interact. Following the definition of Hersperger and Bürgi 

(2007), the societal background and its cultural driving forces are similar to natural drivers, a starting 

position from which the other three groups emerge. The societal background represents the history of a 

city or country, but also the cultural and demographic composition of a society. The social and cultural 

background influences, along with personal preferences, the locational choices individuals make 

(Verburg, Ritsema van Eck, et al., 2004). Inferring from the conceptual framework shown in Figure 1, 

it becomes clear that even if not explicitly included, the cultural background is always present through 

its influence on other drivers. 

Economic drivers entail market structures, but also consumer demands and incentives from 

governments, such as subsidies. Models that base their assumptions purely on economic theory often 

include land-rents as drivers of urban expansion. The underlying assumption, which is based on the 

insights of Von Thünen (1966) and Ricardo (1817), is that in an equilibrium state, land will always be 

used in a way that maximizes profits. In economic terms, this is often called the ‘bid-rent’ approach. 

Alonso (1964) was one of the first to explain the complex relationship between urban land-use and land 

rents. Overall, it seems very difficult to include economic drivers in urban expansion models, as we will 

see during the discussion of empirical studies in section 2.4.  

Political drivers include all kinds of policies that influence landscape division, such as infrastructure 

policies or policies on nature protection (Hersperger and Bürgi, 2007). Recent literature emphasized the 

vital role of spatial policies for land-use change and urban development (Hersperger et al., 2018). 

Nevertheless, political drivers are often excluded from land-use change models, especially those that 

cover a large extent (e.g., global assessments). The main reason for this shortcoming is a lack of large-

scale, spatially explicit datasets on spatial policies (Veldkamp and Lambin, 2001). One of the few 

exceptions is the global study by Seto et al. (2011), in which the authors included national policies on 

car use as a representation of the degree of spatial planning. 

The framework in Figure 1 shows that economic and political drivers are interrelated. This means that 

economic development often affects policymaking. The interplay of economic and political drivers 

forms the basis for technological drivers. Technological drivers include not only technologies 

themselves but also the general knowledge on how to implement hese tools efficiently (Hersperger and 

Bürgi, 2007). 
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2.3 Statistical methods for analyzing urban-growth 

Methods used in land-use change studies range from purely statistical approaches to cellular automata 

techniques, multicriterial analysis to purely theory-induced approaches. Theory-induced approaches are 

often used if the focus of the study lies on the causal relationship between urban growth and underlying 

driving forces. Statistical methods outperform theory-induced methods in modeling existing spatial 

patterns (Overmars, Verburg and Veldkamp, 2007), and are, therefore, more suited for this study's aim.  

Most studies that use a statistical method to analyze land-use change patterns use logistic regression 

(logit) models. Studies that analyze different land-use classes simultaneously use multinomial logit 

models as a standard. If the goal is to classify only one specific land-use class, such as urban sites, 

binary logit models are commonly used.  

Like standard linear regression, the goal of the logistic regression is to predict an outcome variable1 

based on one or more independent variables2. The main difference in logistic regression is that the 

outcome variable is categorical as opposed to continuous. In the case of a binary outcome variable (for 

example, 0 or 1), the logistic regression predicts whether the outcome is 0 or 1 based on log odds ratios. 

Another vital difference between logistic and linear regression is that the optimal model is not fitted 

with the least squares method, but with the maximum likelihood method. With the maximum likelihood 

method, the likelihood that the fitted model describes the observed data is maximized. 

2.3.1 Binary Logit Models  

Binary Logit models, or binary logistic regression models, are commonly used to analyze the 

determining factors of locational urban growth. Binary logit models are a specific form of generalized 

linear models (GLMs) that include a wide range of models. Generalized linear models are not the same 

as General linear models, which are simply a specific form of linear regression models. GLMs differ 

from simple linear regression models in that they do not require the dependent variable Y to be normally 

distributed. The general assumption in GLMs is that Y follows an exponential family distribution, such 

as a binomial or multinomial distribution. As for this study, the goal is to explain the presence or absence 

of urban land-cover in a cell. The response variable is binary (categorical with two classes), which 

means that we are dealing with a binomial distribution.   

In cases where the dependent variable is binary (Yi = 0, if the cell is non-urban; Yi = 1, if the cell is 

urban), one often uses linear logistic models, in which the log-likelihood ratio of the dependent variables 

is assumed to be in a linear relationship with the explanatory variables (X = [X1, X2, … Xp]): 

 log(
Pr(𝑌! = 1	| 𝑋! = 𝑥!)
Pr(𝑌! = 0	| 𝑋! = 𝑥!)

) = 	𝛽" +	𝛽	𝑥, Eq.  1 

 

1 Other terminologies used are: dependent variable, response variable  
2 Other terminologies used are: predictors, regressors, covariates 
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In the case of binary logistic regression models, Xi can be discrete, continuous, or a mix of both. The 

subscript ‘i’ indicates an individual cell, 𝛽"		is the intercept with the y-axis and 𝛽	 is a vector of 

regression coefficients for the independent variable x. Eq.  1 can be rewritten in a way that allows us to 

estimate the probability of Yi being one, given the set of explanatory variables:  

 Pr(𝑌! = 1	| 𝑋! = 𝑥!) =	
𝑒$!%	$	&

1 +	𝑒$!%	$	&
	 . Eq.  2 

 

A binary logistic regression model, as shown in Eq.  1 and Eq.  2, is just one of the many models that 

fall under the category of generalized linear models. In this case, the generalization is the logit 

transformation of the conditional probability that Yi = 1, which then allows us to make estimations with 

a linear model. Such a transformation is also known as a link function, as it links the probability of a 

binary dependent variable to the linear function of independent variables. GLMs always consist of the 

probability of the dependent variable (random component), a set of independent variables with a linear 

relationship (systematic component), and a link function that brings both components together.  

The literature review in section 0 has shown that binomial logit models are prevalent for studying the 

correlation between driving forces and urban growth. Also, for more general land-use change studies, 

binomial logistic regression is a common approach (Verburg, Ritsema van Eck, et al., 2004; Koomen 

et al., 2015). Another popular model in urban growth studies is the probit model, which is very similar 

to the logit model, only it includes a probit (probability + unit) instead of a logit link function 

(McMillen, 1992; Li, Sun and Fang, 2018). 

2.3.2 Penalized Logistic Regression  

The theoretical concepts behind urban growth and the review of empirical evidence have highlighted 

the complicated relationship between a large number of driving forces and locational urban growth. 

Including all driving forces identified in the literature could make the binomial logit model extremely 

complex and eventually impair the model’s performance, especially on a global scale. One possibility 

to optimize model complexity and performance is to add a penalty term to the logistic regression. 

Penalized logistic regression models place constraints on the coefficients, which prevents overfitting 

and reduces the number of independent variables without the need for the researcher to make a selection 

a priori. The three most widely used forms of penalized logistic regressions are the ridge regression, 

lasso regression, and the elastic net regression, which is a mix of a ride and lasso regression.  

The LASSO (L1) penalty, first introduced by Tibshirani (1996) with essential adaptations by Zou 

(2006), penalizes the Maximum Likelihood Estimator by the absolute sum of the coefficients, thereby 

discouraging high parameter values. The magnitude with which the penalty is applied depends on the 

tuning parameter λ, which is optimized through cross-validation. A higher λ would mean that the 

parameters for more noise coefficients are set to zero, which means that fewer variables are kept in the 
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model. The advantage of using the LASSO penalty is that independent variables with little or no 

predictive power will be automatically removed from the model, increasing efficiency and the risk of 

overfitting the model in exchange for an acceptable amount of bias. The LASSO method is similar to a 

stepwise selection method based on information criteria, as introduced by Granger, King and White 

(1995) and Sin and White (1996). The ridge (L2) penalty following Park and Hastie (2008) is very 

similar to the L1 penalty with the same goal. However, instead of penalizing the number of coefficients, 

it penalizes the absolute magnitude of the coefficients. Combining the two primary forms of penalized 

regression, the elastic net regression model attempts to find a parsimonious model with either a few 

non-zero coefficients or small absolute magnitude coefficients that best fit the input data.  

2.3.3 Random forest models 

Besides binary logistic regression models, the random forest model, first introduced by Breiman (2001), 

is a popular non-parametric classification and regression tool due to its ability to generate good results 

using standard parameter values and its robustness to noise. It constructs prediction rules without 

imposing strong prior assumptions on the functional form of the relationship between independent 

variables and the outcome variable. It is beyond the scope of this thesis to go deeper into random forest 

models that have been extensively covered in review articles, such as those of Biau (2012); Biau and 

Scornet (2016). The random forest model can be useful for complex datasets, where linear-based models 

may not be able to understand the boundary between two binary classes, resulting in poor model 

accuracy (Couronné, Probst and Boulesteix, 2018; Kirasich, Smith and Sadler, 2018).  

2.3.4 Methodological issues related to urban growth studies  

When analyzing driving forces behind urban land-use change, there are some relevant properties of the 

problem at hand that need to be considered. First of all, in spatial cross-sectional approaches as applied 

in this study, data is generally dependent across space (Anselin, 2003). In particular, the natural 

(geophysical) driving forces experience strong spatial dependencies, as does the dependent variable 

itself.  Next to the interrelation of observation across space, we see dependencies across time and 

endogenous interaction between the different driving forces. 

Next to spatial heterogeneity, spatial autocorrelation (the dependency of observations close to each 

other in space) is one of the main issues in spatial econometrics (Paelinck and Klaassen, 1979; Anselin, 

1988). As with any statistical issue that threatens the assumption of independent error terms, the main 

goal of the research is to control for this nuisance to get consistent and efficient parameter estimates. 

Methodological integration of spatial dependence in binary regression models is a complex matter 

(McMillen, 1995; Beron and Vijverberg, 2004; Smith and LeSage, 2004). Two widely used general 

spatial models are the spatial probit and the spatial logit model (McMillen, 1992; Anselin, 2003). Within 

those models, the spatial dependency can be either included as a spatial lag or a spatial error dependence 

(Anselin, 2003). In spatial lag models, also known as autoregressive model, a spatially lagged form of 
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the dependent variable is included as an independent variable in the model (Anselin, 1988, p. 35). 

Autoregressive models for binary responses were introduced by Besag in 1974 under the name of auto-

logistic models. In the cases where the model includes covariates along with the response variable, we 

are talking about autologistic regression (ALR) models.  

In land-use change models, it is common practice to include neighborhood rules to account for 

autocorrelation (Zeng et al., 2008; van Vliet et al., 2013). This reference to surrounding land-use of the 

same type is known as an autologistic specification. Dendoncker and colleagues (2006) have 

demonstrated that introgressive models are especially well suited to reproduce land-use patterns. 

According to Overmars, De Koning, and Veldkamp (2003), neighborhood effects can account for 

economic forces that are normally hard to include in regression models, but play an essential role in 

city growth (see section 2.1), such as the path dependency of urban areas and economies of scale.  

Next to endogeneity problems due to spatial autocorrelation, problems can arise because of endogenous 

interactions between the driving forces. For modeling purposes, it is often assumed that locational urban 

growth drivers are exogenous, which can potentially lead to methodological issues and biased results, 

as many factors are actually endogenous. The endogeneity of selected drivers can especially become a 

problem when studying urban growth over a long period. Path dependency has a great role to play in, 

for example, infrastructure and urban expansion, as both are interrelated, and the causal relationship is 

not always clear (Verburg, Schot, et al., 2004). Before selecting driving forces, it should be explicated 

whether the study aims to explain expansion patterns over a more extended period, or small urban area 

changes over shorter periods. Especially driving forces connected to second nature agglomeration 

forces such as the availability of jobs, or other socio-economic factors that become more important as 

a city expands, should be evaluated carefully before being included in the analyzes to avoid biased 

results. Instead of including economic drivers that are often endogenous to urban expansion, biases can 

be avoided by including proxies for market access and trade instead, such as the proximity to rivers or  

the sea (Verburg, Ritsema van Eck, et al., 2004).   

2.4 Empirical evidence 

Even though a considerable amount of literature has focused on land-use change and the persistent 

growth of urban areas over the last few decades, only a few studies have explicitly focused on the 

drivers determining the spatial location of urban growth. Two general criteria have been applied for the 

selection of relevant empirical background literature: The first criterion was that the study focus has to 

be on locational urban growth and not on quantitative change. The second criterion was related to the 

method applied to determine drivers of locational urban growth. This resulted in the selection of studies 

that use an inductive (data-driven) approach to determine driving forces of urban expansion and the 

strength of their effect. Overmars, Verburg and Veldkamp (2007) concluded that inductive approaches 

are preferred over deductive approaches, when the goal of the study is to reproduce existing land-use 
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patterns. The drawback of inductive approaches is that they do not clarify causal relationships between 

driving forces and urban growth. The first part of this section will provide a general overview of the 

different studies and their methodological approaches, followed by a more in-depth analysis of the 

driving forces of urban expansion identified in these studies.  

Generally, the review of different empirical studies has shown that most studies focus on urban patterns 

that developed over longer periods or on change/growth of urban areas over smaller periods. Only a 

few global studies on locational urban growth exist, as mentioned in the introduction. One of these few 

existing global studies by Seto et al. (2011), analyzes global urban expansion between 1970 - 2000. A 

multivariate regression analysis was carried out to test the predictive power of different key drivers of 

urban areas. The analysis includes driving forces of quantitative change, such as the population growth 

rate and the driving forces of locational change, such as the coastal zone location. The dependent 

variable of the analysis was the decadal rate of urban land expansion, and the drivers were selected from 

“urban theory and models” (Seto et al., 2011, p3). The multivariate regression model is not further 

specified. The study period and the dependent variable illustrate that the study’s focus lies in explaining 

the resultant change in urban area and not the growth pattern itself.  

A second global study by Seto, Güneralp and Hutyra (2012) predicts the extent of the world’s urban 

areas in 2030 with an adopted version of the land-cover change model ‘Geomod’ (Pontius, Cornell and 

Hall, 2001). The modified model, called ‘Urbanmod’, determines the location of the new urban area 

based on an initial land-cover map and four additional driver maps. The approach is more sophisticated 

than the one by Seto et al. (2011) because the quantitative and locational change of urban areas is 

calculated in two different steps. The four drivers were used in statistical analysis to generate a 

suitability map for urban expansion. The description of the methodological approach does not include 

any additional information on the statistical approach nor any validation of the statistical analyzes. Both 

global studies use only a small number of drivers, without any regional differentiation. 

 
Figure 2 | Continents and focus region empirical studies 
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Besides the few global studies, most of the current literature on locational change of urban areas focuses 

on a specific region or city. The majority of studies that fit the criteria for this literature review are on 

Chinese cities; however, only two of those been selected for further discussion. The study by Li, Sun 

and Fang (2018) includes a thorough review of other studies on Chinese cities. Outside of China, the 

number of studies fitting the criteria described above is small. To gain a first insight into the possible 

differences of driving forces between continents, at least one study of each continent (see figure 2) will 

be discussed. However, for most of the continents besides Asia, not many more studies exist that fit the 

criteria. For Oceania, no study with an inductive approach could be found, only literature-based studies, 

e.g., Bohnet and Pert (2010). 

2.4.1 Methodological approaches 

All studies shown in figure 2 use a binary logistic regression to determine the importance of driving 

forces behind urban growth. Predominantly the dependent variable is the change in urban area over a 

relatively short time period, e.g., 1984- 2000 (Braimoh and Onishi, 2007), 1993–2000 (Batisani and 

Yarnal, 2009). Some studies analyzed several time periods, e.g., 1989–1995, 1995–2003, and 2003–

2010 (Vermeiren et al., 2012). The results by Vermeiren et al. (2012) show that the effect of driving 

forces varies over the different time periods, such as the effect of the distance to a road which became 

weaker over the years. A recent study by Cao et al. (2020) looks at Hangzhou’s (China) urban area 

changes within four different time periods. They find that not only the effect of specific driving forces 

changes over time, but also the number and type of driving forces.  

Some deal with spatial autocorrelation by using spatial lag Probit models or spatial error Probit models 

or both (Li, Sun and Fang, 2018). Many studies account for autocorrelation by including a reference to 

the surrounding land-use, as will be discussed in the following section. Prevalent among the studies to 

measure the accuracy of the developed classification models is the receiver operating characteristics 

(ROC) procedure (Braimoh and Onishi, 2007; Poelmans and Van Rompaey, 2009; Vermeiren et al., 

2012; Li, Sun and Fang, 2018). The ROC curve is usually given as a single value, which represents the 

area under the ROC curve, often abbreviated as AUC. The ROC curve compares the true positive with 

the false positive rate. If the model randomly assigned all suitable locations for urban development, the 

ROC value would be 0.5. If there is a perfect fit between the real land-use and the predicted land-use, 

in our case land-use being urban or non-urban, the ROC value would be 1. Other goodness-of-fit 

parameters often used to compare models are the Akaike’s Information Criteria (AIC) and the log-

likelihood (Li, Sun and Fang, 2018).  

2.4.2 Driving forces of locational change 

The set of driving forces used to explain and model land-use change strongly depends on the 

simplification of the model and the researcher’s theoretical assumptions (Verburg, Schot, et al., 2004). 
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For this study, a twofold selection method is used based on empirical studies and machine learning. In 

the first step, drivers of locational change have been identified in the literature, which will be discussed 

in this section with reference to the framework by Hersperger and Bürgi (2007) (see Figure 1). The 

second selection step involves stepwise and penalized regression, further discussed in the 

methodological section 0.  

2.4.2.1 Natural/spatial drivers  
The natural/spatial drivers, as Hersperger and Bürgi (2007) have defined them, can be divided into two 

subgroups. The first includes physical characteristics such as elevation and soil type, but also natural 

hazards such as flooding. Such drivers correspond with the theoretical construct of first nature 

agglomeration causes. The second group comprises of so-called neighboring factors, which are, for 

example, the current land use surrounding a cell, as well as existing infrastructure networks.   

Natural drivers  

The most commonly used natural drivers in the reviewed empirical studies are the slope and elevation 

(Batisani and Yarnal, 2009; Reilly, O’Mara and Seto, 2009; Bohnet and Pert, 2010; K.C. Seto, Güneralp 

and Hutyra, 2012; Li, Sun and Fang, 2018). Whereas all studies find a negative correlation between the 

slope and urban growth, meaning that urban growth becomes less likely on steep terrain, the direction 

of the effect of elevation on urban growth varies between regions. Studies from the continents Asia, 

South- and North America find a negative effect of elevation on urban growth (Aguayo et al., 2007; 

Batisani and Yarnal, 2009; Li, Sun and Fang, 2018). Both studies on regions in Africa, however, find 

the opposite and conclude that an increasing elevation has a positive effect on urban growth (Braimoh 

and Onishi, 2007; Vermeiren et al., 2012) 

Another natural driver mentioned several times is soil type. Studies for South- and North America have 

shown that urban land expansion is positively correlated with productive agricultural soils (Aguayo et 

al., 2007; Batisani and Yarnal, 2009; Reilly, O’Mara and Seto, 2009). Another study by Mundia and 

Aniya (2005) found that soil is one of the most important factors influencing the spatial patterns of the 

urban expansion of Nairobi city, Kenia’s capital. The authors have found that clay soil reduces the 

probability of land being transformed into urban area due to their poor water permeability. On the other 

hand, “well-drained red soils of volcanic origin, covering the western and northern areas have promoted 

the urban expansion in these directions” (Mundia and Aniya, 2005, p. 2845). Verburg et al. (2004) also 

report soil and drainage conditions as essential drivers. Their results show that in the Netherlands, soils 

with high loam content are preferred for urban development. Hietel, Waldhardt and Otte (2005) found 

that biophysical factors such as slope, elevation, and soil mainly function as constrains for urban 

development. This is in accordance with the definition by  Verburg, Schot, et al. (2004) motioned in 

section 2.2.1, saying that natural drivers steer urban development in an indirect way over allocation 

decisions.  
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Other natural occurrences that seem to influence the probability of an area being urbanized are sea and 

river floods. The correlation between flood-prone areas and urban growth can be positive (Bohnet and 

Pert, 2010; Vermeiren et al., 2012) as well as negative (Poelmans and Van Rompaey, 2009). The 

negative effect can be easily tied to the economic risk imposed by floods. The positive correlation is 

more difficult to explain. A possible explanation could be that positive effects from being close to the 

sea or a river outweigh the present risk. If the latter is true, a positive correlation should exist between 

rivers and urban growth. To better understand the relationship between natural hazards and urban 

growth, it would be interesting to study other hazards next to floods. So far, no studies could be found 

that analyze the effects of other natural hazards on urban expansion patterns. 

Spatial drivers  

The proximity to freshwater resources such as rivers and lakes on the probability of urban growth seems 

to vary around the globe. In China, the presence of a river or lake nearby decreases the probability of 

urban expansion (Li, Sun and Fang, 2018, p. 70), possibly due to the flood risk. In Africa, on the other 

hand, the probability of urban development increases near freshwater (Braimoh and Onishi, 2007, p. 

511). The distance to waterworks is mentioned as a crucial factor for urban development in Africa as 

well (Braimoh and Onishi, 2007). Both cases show that access to a water source is essential for urban 

development in Africa, but not in other generally more developed regions. Next to the availability of 

freshwater, the average distance to the nearest sea-navigable river is also a measure for market access 

to a city/country. Fujita, Krugman and Mori (1999) highlighted that most old cities in the U.S are 

“located along the northern part of the Atlantic coast or navigable rivers, reflecting the importance of 

sea- and river transportation for trade with Europe as well as within the U.S.” 

Studies from different continents (Asia, Africa, Europe and South and North America) have found the 

proximity to infrastructure to be the most crucial determinant of locational urban expansion (Aguayo 

et al., 2007; Braimoh and Onishi, 2007; Batisani and Yarnal, 2009; Poelmans and Van Rompaey, 2009; 

Reilly, O’Mara and Seto, 2009; K.C. Seto, Güneralp and Hutyra, 2012; Vermeiren et al., 2012; Li, Sun 

and Fang, 2018). Some of these studies differentiate between types of infrastructures such as highways 

(main roads), national ways (secondary roads) and railways (Aguayo et al., 2007; Poelmans and Van 

Rompaey, 2009). The proximity to infrastructure can be directly linked to travel time and respectively, 

transportation costs. From extensive work on the core-periphery model, we know that there is a strong 

relationship between transportation costs and agglomeration (P. Krugman, 1991). If transportation costs 

are high, we expect dispersion. At intermediate transportation costs dispersion and agglomeration could 

be the dominant mechanisms. In contrast, low transportation costs, in theory, result in agglomeration. 

It is, therefore, reasonable to assume from an economic theory perspective that a good infrastructure 

network stimulates agglomeration. Glaeser and Kahn (2003) suggest that transportation costs have 

played an important role in the growth of Wall Street, along with agglomeration benefits.   
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As mentioned in section 2.3.4, some reference to the surrounding urban sites is often included in the 

analyzes to account for autocorrelation. The density of the built-up area in the neighborhood has been 

included in nearly all empirical studies analyzed for this chapter (Cheng and Masser, 2003; Aguayo et 

al., 2007; Braimoh and Onishi, 2007; Reilly, O’Mara and Seto, 2009; Müller, Steinmeier and Küchler, 

2010; Vermeiren et al., 2012; Li, Zhou and Ouyang, 2013; Li, Sun and Fang, 2018). The effect of a 

dense urban area nearby seems to differ regionally. In studies from Chile, Uganda, China, and India, a 

positive effect was found of dense urban area on urban expansion (Aguayo et al., 2007; Reilly, O’Mara 

and Seto, 2009; Vermeiren et al., 2012; Li, Sun and Fang, 2018). In Silicon Valley (U.S.), however, the 

effect seems to be reversed, and a higher density in the surroundings decreases the chances of urban 

growth (Reilly, O’Mara and Seto, 2009). This could be an indication of the higher vehicle dependency 

in North America compared to the other regions. Another or even a complementary explanation could 

be the higher demand for urban land per capita, often referred to as urban sprawl observed in the United 

States and other highly developed regions like Western Europe (Wolff, Haase and Haase, 2018).  

2.4.2.2 Economic drivers  
Economic drivers, such as consumer demands and market structures, are challenging to measure and 

difficult to include in land-use change models, especially on a global scale. Most often, spatial variables, 

such as the distance to roads (travel time) or the distance to the socio-economic center of a region, are 

included in the analyzes as a proxy for economic drivers (Veldkamp and Lambin, 2001). Many studies 

found a negative correlation between urban growth and the distance to the socio-economic center 

(Braimoh and Onishi, 2007; Reilly, O’Mara and Seto, 2009; Vermeiren et al., 2012; Li, Sun and Fang, 

2018). Another commonly used economic driver is the employment potential, which is used as a relative 

measure for job accessibility (Poelmans and Van Rompaey, 2009; Reilly, O’Mara and Seto, 2009). The 

population density in rural or suburban areas often represents consumer demand and market potential 

(Liu, Zhan and Deng, 2005). The population density must not be confused with the population growth 

rate, which is a driver of quantitative urban growth. Li, Sun and Fang (2018) and Seto, Güneralp, & 

Hutyra (2012b) also found a positive effect of high population densities on urban growth.   

2.4.2.3 Political drivers  
Only a handful of political drivers have been included in land-use change models. As mentioned in 

section 2.2.1, especially large-scale studies lack information on political drivers. One policy that has 

been included in several studies is nature protection. Braimoh and Onishi (2007) found that in Nigeria, 

the probability of urban development increases with increasing distance to protected areas. Nieves et 

al. (2020) also include the distance to protected areas as a political driver.  Verburg and his colleagues 

(2004) included two different policies on spatial planning in the Netherlands in their analyzes. The 

policies ensured that urban growth occurred in designated areas and that other cities were not getting 

too big, and nature would not disappear (Dieleman, Dijst and Spit, 1999).  
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2.4.2.4 Overall picture  
A couple of findings stand out after analyzing the drivers behind urban development. The first one being 

that key drivers do indeed differ strongly between studies in different regions. Differences have been 

identified in both the number and types of drivers, as well as the effect they have on urban development. 

Natural/spatial drivers seem to be overrepresented in most studies analyzed compared to the other four 

groups of drivers. After analyzing the results of Poelmans and Van Rompaey (2009), Vermeiren et al. 

(2012) and Li, Sun and Fang (2018), it seems that the drivers behind urban development become more 

complex, and forecasting models less accurate, for countries or regions with highly developed urban 

areas.  

3 METHODOLOGY  

In this section, the methodical approach will be explained in more detail. First of all, an overview of 

the dependent and independent variables used for the regression analyzes will be provided. The 

independent variables are a selection of the driving forces identified in the literature in 2.4.2. Not all 

identified drivers could be included due to missing global datasets on, for example, employment 

potential or spatial policies. The second part of this chapter includes a description of the different 

logistic regression models. Models were tested with the urban extent in 2010 as dependent variables, as 

well as the change in urban area between 1990-2010. 

3.1 Data 

3.1.1 Dependent variable – Urban Area 

Urban area 2010. The dependent variable is a raster with cells that are either urban or non-urban. Cells 

labeled as non-urban include all other land-use classes, except for water, which has been masked prior 

to the analysis. The dependent variable is in the context of a binary logistic regression, also known as 

outcome or response variable.  No consistent global definition for “urban land-use” exists, which 

complicated the initial classification for a global dataset of urban-land use. Eventually, the dataset 

containing information on the presence of built-up area from the European Commission’s Joint 

Research Centre (JRC) was used to classify cells as urban. A more detailed description of the 

classification of urban areas can be found in the background report for the urban growth model ‘2UP’ 

(Huijstee et al., 2018).  

Urban growth 1990 – 2010. The literature study has shown that the influence of different determining 

factors can vary depending on the time period that is examined.  For this reason, a secondary analysis 

was carried out to explain the change in urban area between 1990 and 2010. Similar to the urban extent 

in 2010, the data was supplied by PBL and is based on the dataset from the JRC. The variable initially 

had three categories: cells that were already urban in 1990, cells that became urban between 1990 and 

2010, and cells that were non-urban in 1990 and stayed that way. Due to the focus on the change in 
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urban area between 1990-2010, all cells that were already urban before 1990 were excluded from the 

analysis.  

3.1.2 Independent variables   

Based on the empirical evidence presented in section 2.4.2, different variables determining the spatial 

location of urban growth have been selected. PBL Netherlands Environmental Assessment Agency has 

supplied all datasets for the explanatory variables. A comprehensive list of the source data can be found 

in appendix 8A. Table 1 provides an overview of the variables, some of which had to be pre-processed, 

as explained in this section.  

Table 1 | Descriptive statistics of the data 

Variable Min Max Mean Type of data 

Country grid 0 250 121 Not included in the final analysis 

Continent grid 0 7 2.9 Not included in the final analysis 

Governance factor  0 1  Dummy 

Urban Area Density 0 1 0.004 Continuous  

Coastal Urban Area Density 0 36.3 0.01 Continuous  

Elevation [meters] -407 8519 626 Continuous  

Slope [degrees] 0 53.2 1.6 Continuous  

Terrain ruggedness index (TRI) 0 7 2.6 Continuous  

Travel time  0 11.8 0.2 Continuous  

Soil type 0 35 13.6 Categorical 

Protected Area 0 1 0.12 Dummy 

Flood Prone Area  0 1 0.04 Dummy 

Landslides (Earthquake) 0 1 0.03 Dummy 

Landslides (Precipitation) 0 1 0.06 Dummy 

Earthquakes  0 8 1.4 Continuous  

Distance to river 0 95.8 0.53 Continuous  

Country & Continent grid. The continent codes have been used solely to split the primary dataset in 

separate datasets for each continent and are not further included in the analysis. Similarly, the country 

grid is not included in the primary analysis but was used to add a country-specific governance index to 

the dataset, as explained in more detail hereafter. 

Governance factor. The theoretical and empirical background has shown that political drivers are 

essential in the urban growth process but are often underrepresented in urban growth studies. Therefore, 

a governance factor in the form of a binary variable (0 or 1) has been included in the analysis. The 

factor was created with the Worldwide Governance Indicators (WGI) dataset of the World Bank. The 

governance indicator project was initiated by Kaufmann and Kraay in 1999,  with major contributions 

by Zoido and Mastuzzi. Their definition of governance and a reference to the original datasets can be 

found in appendix 8A. The dataset includes six different measures for governance, which are available 

for each country over several years. An average for all categories over time was calculated to reduce 
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nuisance from outliers. To create only one value indicating the country's governance level, the average 

of the six different categories per country was taken as well. Initially, the values range from -2.5 to 2.5. 

For simplicity, all negative values have been transformed into zeros and all positive values to ones. This 

allows us to interpret the index as a dummy variable, and straightforwardly create interaction variables. 

The governance index has been added to the main dataset based on the country code.  

(Coastal) Urban Area Density – Autologistic specification. The urban area density represents the 

presence of urban sites in the surrounding grid cells and is therefore an autologistic specification, as 

described in section 2.3.4. Following Anselin (1988), a spatial weight matrix has been applied to obtain 

a density value ranging from zero to one. A spatial lag is introduced by calculating the surrounding 

urban area density based on the urban area in 1990, and not on the urban area in 2010. The density of 

the coastal urban area is calculated in the same way (based on the coastal urban area 1990 and with a 

spatial weight matrix). The only difference is that the proximity to the coastline is included. 

TRI. Following Huijstee and her colleagues (2018), the terrain roughness index (TRI) was added as an 

independent variable, along with slope and elevation. The TRI is an indicator of the topographic 

heterogeneity, based on the difference in elevation between a cell and its surrounding cells (Riley, 

Degloria and Elliot, 1999).  

Travel Time. The travel time variable is an index value of the travel time in minutes to the nearest city 

center. The index ranges from 0 to 12, with 0 representing the exact center of a city and 12 all grid cells 

with a travel time that exceeds 60 minutes to the city center. The calculations are based on road data 

and the city centers of urban clusters with more than 50.000 people (see appendix 8A.) 

Soil type. Data on the type of soil was obtained from the harmonized world soil database (HWSD). The 

data contains 33 categories. An overview of all categories can be found in appendix 8F. Category 29-

33 are labeled as “non-soil” in the official report and are therefore excluded from the analysis 

(Nachtergaele et al., 2010). The soil type variable is transformed into ‘factor’ in a pre-processing step, 

in order for R to interpret the soil type as a categorical variable. By default, R takes the first category 

as a reference category and compares all other categories to this reference category. Because the soil 

type variable was converted from a categorical variable to numerous dummy variables, it is crucial to 

control for variables with zero or near-zero variance. For example, in the case that one type of soil is 

not at all present or less abundant within a continent, one of the dummy variables consists mostly out 

of zeros and has little to no variance. Those variables have little predictive power and can cause 

problems with the regression models later. Due to these reasons, all soil types with very low variance 

have been removed prior to the regression analysis. This was done with the nearZeroVar() function 

from the ‘caret’ package in R (the following section includes a more detailed description of the R 

package). The function removes variables based on two criteria: the frequency ratio (freqCut) and 
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the unique value percentage (uniqueCut). The following values have been used for the criteria: 

freqCut = 10 and uniqueCut = 15. 

Protected areas. Protected areas are one of the few policy-related variables available on a global scale, 

and the literature review shows that a significant correlation exists between this variable and urban 

growth. Protected areas have, therefore, been included as a dummy variable, which takes on the value 

one if more than half of a grid cell is covered by a protected area and zero otherwise. Additionally, an 

interaction variable has been created between the governance indicator and protected areas, to see if 

protected areas restrict urban growth less in countries with a negative governance factor. 

Natural hazards. As discovered during the review of the empirical studies, flood risk is often included 

in the analyzes and found to be a determining factor behind urban growth. Other natural hazards have 

so far not been included in other studies, which is why this study includes next to flood-prone areas, 

also areas that are affected by landslides and earthquakes. A distinction is made between landslides 

triggered through precipitation or earthquakes. Both types of landslides, as well as flood-prone areas, 

are included as dummy variables. Earthquakes are included as a continuous variable, with values 

ranging from zero to seven, with higher values representing higher intensities. 

Distance to rivers. The distance in kilometers to the nearest river from each cell was included as a 

proxy for freshwater availability, as well as transportation possibility and market access.   

Correlation matrix. A common problem in regression models is the occurrence of multicollinearity 

when independent variables are not, in fact, independent. Therefore, the correlation between the 

independent variables was tested before the analysis. The results shown in Figure 3 indicate that no 

strong correlations (correlation > ± 0.8) exist between independent variables. The strongest positive 

correlation was found between the TRI, elevation, and slope. It is also noticeable that a strong 

correlation exists between the dependent variable (Urban Area 2010) and the urban area density.   

 

Figure 3 | Correlation matrix Europe (left) and Asia (right) for the urban area 2010 
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In figure 4 we can see the same correlation matrices as in figure 3, only this time with urban growth 

between 1990-2010 as the dependent variables. It becomes immediately apparent that the correlation 

between the dependent variable and the urban area density decreased substantially, viz. for Europe from 

0.68 to 0.28. The correlation matrices for the other continents can be found in appendix 8C. 

 

3.2 Analysis  

The analysis consists of two parts, each of which deals with one of the two research questions. This 

study aims to understand the effect of different drivers on urban growth and their regional differences. 

A binary logistic regression analysis was chosen to analyze this effect based on the theoretical and 

empirical background. The analysis was performed with the open-source R package ‘AutoGLM’3. This 

package was developed by Bo Andrée to perform regression analyzes, such as linear, logit, and probit 

models, with large datasets. The package is very suitable in our case because we do not have to choose 

a priori which variables to keep in the model. The optimal number of variables for a parsimonious 

model is found through an automated stepwise regression, further explained in section 3.2.1. The second 

part of the analysis is focused on the second research aim and was performed with the R package ‘caret’ 

(Classification And REgression Training), developed by Max Kuhn for predictive modeling (Kuhn, 

2008). Caret is one of R's most widely used packages for supervised learning, also known as predictive 

modeling. Supervised learning is a specific case of machine learning with a target variable; in this case, 

the dependent variable ‘UrbanArea2010’. Because the target variable (UrbanArea2010) is a categorical 

 

3 The package can be installed in R with the following two commands:  
library(devtools)  
install_github("BPJandree/AutoGLM")	 

Figure 4 | Correlation matrix Europe (left) and Asia (right) for change 1990 - 2010 
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variable with two classes (either urban or non-urban), a classification will be performed instead of 

regression with a numeric response variable. ‘Caret’ is particularly well suited to compare different 

models with one another (Kuhn, 2008). The main expectation of the perfect model we are trying to 

build is that it predicts the correct class as often as possible, based on the input variables (driving forces) 

and parameters.  

Before carrying out the two parts of the main analysis, a few data processing steps had to be performed. 

The global assessment on a high resolution, together with a large number of independent variables, has 

resulted in an extensive dataset of approx. 22 GB, including a little more than 200 million observations. 

Because a dataset of this size is beyond a 64GM RAM machine's capabilities, the dataset was split into 

six separate datasets for each continent. The following pre-processing and analysis steps have been 

executed for each continental dataset separately. Firstly, all rows with missing values have been 

removed, which reduced the number of observations to approx. 9 – 42 million, depending on the 

continent. More information on the sizes of the continental datasets can be found in appendix 8E.  

Secondly, the size has been reduced further by taking a sample from each continental dataset. The 

sampling method used for this step is part of the open-source R package ‘AutoGLM.’ The smart 

sampling algorithm draws random samples and compares those to the original data based on t-tests and 

F-tests. Only samples that are comparable in means and variance to the original dataset are kept. Andrée 

and Koomen (2017) have shown that this sampling strategy can produce a representative sample dataset 

that can then be used for further analysis. Because the continent's datasets have not been equal in size, 

different shares have been taken from the datasets to create the samples (see appendix 8E). Eventually, 

all continent specific samples are equal in size and in practice just small enough to make further 

calculations on a 64GB RAM machine computationally feasible.  

3.2.1 Logistic classification analysis with autoGLM 

For the first part of the analysis, different logit models for each continent are produced with AutoGLM. 

AutoGLM builds optimal models with a stepwise regression process, by minimizing the information 

criteria through the elimination of independent variables with low predictive power. AutoGLM’s 

default optimization strategy was used, which optimizes the regression models based on the AIC. This 

is done by first fitting all variables and then removing variables with low predictive power until the AIC 

is optimized. The AIC uses the log-likelihood measure that informs us how good our model fits the data 

(the less negative the log-likelihood, the better the model fit) and adds to that a penalty for the number 

of variables. Whereas the log-likelihood only informs us of how good the model fits the data, the AIC 

also tells us how parsimonious a model is. For example, if two models have the same log-likelihood, 

but one of them has fewer covariates (independent variables), that model would score better based on 

the AIC. When comparing different models, the model with the lowest AIC will be the most 
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parsimonious. The AIC is a relative measure, meaning that it becomes only a valuable measure if we 

compare different AIC values to each other. 

Because of the second research aim, logit models for each continent are produced with the urban pattern 

in 2010 as a dependent variable as well as with the urban change between 1990-2010. This allows us to 

compare the difference in model performance for both independent variables and the differences in the 

effects of driving forces. When looking at the effects of the driving forces, it is necessary to remember 

that due to the logistic classification model, the coefficients represent log-odds ratios that need to be 

interpreted accordingly. 

3.2.2 Predictive modelling with Caret  

The second part of the analysis aims to compare different types of models to find the most suitable one 

for predicting future urban change. The most important property of the model is, therefore, that it 

performs well on new data. To prevent overfitting and ensure the model performs well on new data, a 

training and testing sample is created from the original dataset. The models will be trained with the 

training sample and tested on the test sample. If we train and test the model on the same dataset, there 

is no way of knowing how well the model generalizes for new data. The Caret package is especially 

well equipped to perform out-of-sample validations. The train/test split was set at 0.5, splitting the 

dataset in 50% test and 50% training data. The train/test split was created with the 

‘createDataPartition’ function, which has the advantage over the more traditional random 

‘sample’ function that the class balance stays intact. Before splitting the data into train and test datasets 

and training the model, R’s random seed is set to two to ensure that all random processes such as the 

train/test data split are reproducible.  

Model training and tuning  

The first part of the analysis describes how a parsimonious model can be found by stepwise regression. 

Another strategy to prevent overfitting is the application of penalized regression, as described in the 

theoretical background (section 2.3.2). Stepwise and penalized regression are similar in the sense that 

both are used to create parsimonious models in exchange for an acceptable amount of bias. Since it is 

not clear in advance which model will make the best predictions, it is common practice in predictive 

modelling to train and compare different kinds of models. For this analysis we will compare a baseline 

logit model without any penalty term to a logistic regression with L1 or L2 penalty, or a mix of both 

(elastic net). These are the three most common forms of a penalized logistic regression as described in 

section 2.3.2. Furthermore, a random forest model is produced to see if a non-linear model can describe 

the relationship between driving forces and urban growth better than the linear models. To build the 

random forest model, R’s ‘ranger’ implementation was used, which is particularly suitable for high 

dimensional data (Wright and Ziegler, 2017). For all models the data has been centered and scaled to 

improve the accuracy from the machine learning algorithms.  
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Customizing trainControl. Before training the different classification models, a custom 

‘trainControl’ function was used, to specify the method by which the models are created. The 

code for the ‘trainControl’ function can be found in appendix 8D. Within the ‘trainControl’ 

function, it is specified that a repeated cross validation will be executed, each time with a total number 

of five folds. In this case during the 5-fold 2-repeat cross validation, the test dataset will be split into 

five sub-samples, two times. Cross-validation is one of the best methods to calculate the out of sample 

validation. Because the test dataset is split into 5 different subsamples, we are able to obtain multiple 

estimates for the out-of-sample error.  

In the control function, we also specify the summary function (‘summaryFunction’), that determines 

which performance summary (evaluation metric) will be computed for the model. Because the data is 

highly imbalanced with more non-urban than urban cells, it is vital to choose the correct classification 

evaluation metric. The literature review has shown that the ROC value is often used to create models 

and compare their predictive power. In our case, however, the ROC can be misleading because of the 

class imbalance of our dataset. For example, the sample dataset for Africa contains 5.396.133 non-

urban cells and only 8601 urban cells. If the model correctly predicts all non-urban cells, the true 

negative rate (specificity) will be very high. Even if the model falsely classifies all urban cells and the 

true positive rate (sensitivity) is subsequently meager, the overall area under the ROC curve will still 

be high because of the relatively small number of urban cells. When selecting the performance metric, 

it is also essential to consider that we are mainly interested in correctly predicting urban sites. In such 

a case, the area under the precision-recall curve (AUC) is a more sensitive measure of model 

performance. The precision tells us what proportion of the positive classified urban sites is actually 

urban. In contrast, the recall (sensitivity) informs us what proportion of the existing urban sites our 

model has identified. Other terms for precision and recall are respectively the user’s and producer’s 

accuracy, which are often used in similar studies to evaluate model performance (De Vasconcelos et 

al., 2001; Andree and Koomen, 2017) 

A second custom ‘trainControl’ function was created that includes one additional line of 

information, that deals with the general imbalance of the two classes (urban and non-urban). One 

solution to this problem of class imbalance is to subsample the training data. For this analysis the 

majority class (non-urban cells) has been randomly down-sampled to match the number of urban cells 

during the resampling process, by adding a down-sampling option to the second ‘trainControl’ 

function (see appendix 8D).  

Custom tuning grid – logit. For the penalized logit models, a custom tuning grid was used in addition 

to the custom ‘trainControl’ function. The custom tuning grid is used because the default tuning 

grid is very small, and using a custom tune grid allows us to explore more potential models. As 

discussed in section 2.3.2 there are two main forms of the penalized regression: the lasso and the ridge 
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regression. For the ᾽glmnet᾽ function we can define two tuning parameters: alpha and lambda. Alpha 

determines which penalty term is used and lambda regulates the strength of the penalty. To 

automatically test which penalization results in a better model, the tuning parameter alpha was set to 0, 

0.5 and 1, which means the pure ridge regression (α=0), the pure lasso regression (α=1) and an elastic 

net regression (α = 0.5) are tested simultaneously for all defined values of lambda. In total ten values 

for lambda between 0.0001 and 1 have been tested, where a higher value for lambda yields a simpler 

model. The full tuning grid can be found in appendix 8D.   

Custom tuning grid – random forest. The random forest tuning grid includes several tuning 

parameters that control the structure of the forest or its trees. Choosing the right parameters is mostly 

an empirical matter. It is outside of this study's scope to go further into the reasoning behind the chosen 

parameters. For discussions on the impact of different parameters see, for example, Scornet (2017). For 

this study, the ‘mtry’ was set equal to the square root of the number of variables. The ‘min.node.size’ 

was set to ten, which is standard for probability models (Wright and Ziegler, 2015). As usual, for 

random forests, the ‘gini’ ‘splitrule’ was used. 

Model evaluation 

Once the model training and tuning is completed, it is important to evaluate how well the models work. 

We generally want to know the goodness-of-fit of the model, and we want quantifiable metrics that give 

us an objective measure on how good the model performs on the test data. We have already constituted 

that the log-likelihood and the AIC are suitable goodness-of-fit measures for our application, as those 

measures account for the number of dependent variables. The model's predictive power will be 

evaluated based on the area under the precision-recall curve (AUC). The last measure used to evaluate 

the models produced with the caret framework is the log-loss statistic.  

The log-loss is a classification loss function often used to evaluate classification models. The log-loss 

function is a useful addition to the AUC evaluation metric because it is based on whether the model 

predicts the correct class, and because it includes the probability for each class. In general, the lower 

the loss-log statistic is, the more often the model predicts the correct class with high certainty. If the 

actual cell is urban, and the model predicts with a probability of 1 that this cell is urban, the cost function 

would be zero—the log-loss increases as the probability with which the correct class is predicted 

decreases. The log-loss function also puts a high penalty on wrong classifications with a high 

probability. If the model classifies with a high certainty a non-urban cell as urban, the log-loss value 

will increase drastically. 
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4 RESULTS  

In this chapter, the results of the analyzes described in the previous section will be presented. First, the 

results from the logistic classification models produced with AutoGLM will be presented for all 

continents. From these results, the main conclusion concerning the first research aim will be drawn. In 

the second part of this chapter, the results of the models produced with ‘caret’ will be discussed for 

three continents; Africa, Asia, and Europe. These results will be discussed mainly with the second 

research aim in mind. 

Results logit models with AutoGLMTable 2 presents the results from the stepwise logit model, with 

the urban pattern in 2010 as the dependent variable. This means the different coefficients must be 

interpreted as the effect that driving forces had on an urban pattern that evolved over a long period. The 

coefficients are given in log-odds ratios. Next to the coefficients, the table includes two goodness-of-

fit measures, the log-likelihood, and the AIC. As described in the method section, AutoGLM's 

optimization strategy is based on the AIC and the AIC in tun is calculated with the log-likelihood and 

the number of variables. Comparing the AIC's from the different continental models shows that the 

models for Africa, Australia and South America better fit the data than the ones for Asia, Europe, and 

North America. The model fit for Europe is by far the worst. The predictive power of the continent 

specific models will be further discussed in the second part of this section. 

Overall, when looking at the regression results for the different continents, we find that the number of 

significant variables differs per continent. For example, in Europe, thirteen variables were kept in the 

model, whereas for Africa, only seven variables significantly contributed to the outcome. It is apparent 

from Table 2 that only significant variables have been kept in the models through stepwise regression, 

with the soil type 23 in Europe as the only exception. The number of significant variables kept in the 

models for the other four continents can be found in the second row of Table 2. Not only the number of 

relevant variables differs between countries, but also the kind of drivers that influence the presence of 

urban sites as well as the strength of their effect. 

The biggest differences exist between soil types, as not all soil types are present in all continents. 

Variables that are found to be significant for all continents are urban area density (positive effect), TRI 

(negative effect), and travel time (positive effect). On all continents except for South America, the 

presence of a protected area is negatively correlated with urban development. All other variables are 

only significant in four or fewer continents. Proximate urban land-use seems to be the most crucial 

determinant of whether a cell becomes urbanized or not for all continents. The positive effect a dense 

urban surrounding has on an individual grid cell varies per continent. The effect is less strong in Europe 

and North America compared to the other continents. The probability of a cell becoming urban increases 

most strongly with the presence of surrounding urban sites in Africa. The effect of the coastal urban 
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area density on the other hand is less commensurate between the continents. First of all, this driver is 

only significant in Asia, Europe and North America. Secondly, a cell near the coast with a high density 

of surrounding urban sites is less likely to be urbanized than a cell further away from the coast in Asia, 

while this effect is reversed in Europe and North America.  

The coastal urban area density is not the only driver that has a positive effect in some continents a 

negative effect in others. For example, soil type 164 is significant in Australia and North America but 

has a negative influence on urban growth relative to the base category5 in Australia, but a positive 

influence in North America. Another example is the presence of a flood-prone area, which has a 

negative influence on urban growth in Australia, North America, and South America and a positive 

effect in Europe. The coefficient in Europe is 0.13, which means that the presence of flood risk increases 

the probability of a cell being urban by exp(0.13) = 1.14 times compared to cells without flood risk.  

Other natural hazards included were earthquakes and landslides. Earthquakes were found to be 

significant in Asia, Europe and North- and South America, and the effect is positive which means that 

if the earthquake intensity of a cell increases by one unit, the probability of that cell to become urban 

increases. This finding is somewhat counterintuitive, but could be due to the fact that most earthquakes 

are too weak to form an actual hazard. Landslides triggered by earthquakes are insignificant and the 

presence of landslides triggered by precipitation has a significant negative effect only in Asia. Another 

interesting finding is that with an increasing distance to rivers the probability of urban growth decreases 

in Africa, Asia, Australia and Europe. The effect is by far the strongest in Australia and the weakest in 

Europe.  

  

 

4 Very shallow soils over hard rock or in unconsolidated very gravelly material 
5 Soils with subsurface accumulation of low activity clays and low base saturation 



RESULTS 

30 

Table 2 | AutoGLM logistic regression results for the urban pattern in 2010 

 

Table 3 shows the results from the logit model with the change in urban area between 1990 and 2010 

as dependent variables. One of the first things to notice is that the number of significant drivers has 

decreased for most continents except for Africa and Asia, where respectively the number has remained 

the same and one variable has been added. Similar to the results for the urban pattern in 2010, the 

goodness-of-fit is the highest for Australia and South America and worst for Europe. Only the urban 

area density and the travel time remained significant for all continents, the TRI is no longer of 

importance in Africa and South America. The urban area density remains the most important driving 

force for all continents, however, the strength of the effect did decrease compared to the results for the 

urban pattern in 2010. For example, in Asia the coefficient decreased from 19.02 to 13.05.  

Not only the strength of the effect of urban area density has changed, but also the strength of most other 

drivers. The coefficient from the flood-prone area in Europe for example increased from 0.13 to 0.51, 

which means that between 1990-2010 a cell with flood risk is 1.7 time more likely to be urbanized than 

UrbanArea 2010 Afrika Asia Australia Europe North America South America 

Nr. of variables 7 10 10 13 10 8  

Urban Area Density  23.26 (0.39) *** 19.02 (0.23) *** 20.02 (0.41) *** 14.26 (0.10) *** 13.75 (0.18) *** 18.95 (0.31) *** 

Coastal UA. Density   -0.13 (0.03) ***  0.28 (0.02) *** 0.08 (0.02) ***  

Distance to river  -0.77 (0.06) *** -0.99 (0.08) *** -1.99 (0.20) *** -0.32 (0.05) ***   

Elevation    0.001(0.0001)***  0.0002(0.0001)** 

Slope   0.06 (0.03) **  0.11 (0.01) *** 0.08 (0.02) ***  

TRI -0.27 (0.03) *** -0.76 (0.03) *** -0.49 (0.08) *** -1.04 (0.03) *** -0.73 (0.03) *** -0.22 (0.04) *** 

Travel Time 0.30 (0.01) ***           0.21 (0.01) *** 0.09 (0.02) *** 0.07 (0.003) *** 0.22 (0.01) *** 0.31 (0.01) *** 

Protected Area  -1.37 (0.21) *** -1.21 (0.16) *** -3.53 (0.66) *** -0.89 (0.06) *** -2.47 (0.25) ***  

Flood Prone Area   -0.65 (0.23) *** 0.13 (0.04) *** -0.31 (0.10) *** -0.56 (0.17) *** 

Earthquake   0.057 (0.008) ***  0.08 (0.01) *** 0.07 (0.01) *** 0.05 (0.02) *** 

Landslide [PR]  -0.50 (0.13) ***      

Soil Class 3 -0.58 (0.11) ***  -1.36 (0.18) ***    

Soil Class 6 -0.25 (0.14) *  -0.52 (0.15) ***    

Soil Class 7    0.43 (0.03) ***   

Soil Class 9      0.23 (0.09) ** 

Soil Class 10  -1.03 (0.11) ***     

Soil Class 15    0.20 (0.05) ***  -0.52 (0.19) *** 

Soil Class 16   -0.86 (0.16) ***  0.38 (0.05) ***  

Soil Class 23     0.06 (0.04)   

Soil Class 24     -1.36 (0.13) ***  

Soil Class 27   -1.33 (0.19) ***    

Constant                                            -6.40 (0.07) ***  -5.32 (0.05) *** -6.04 (0.13) *** -4.38 (0.03) *** -5.38 (0.07) *** -7.81 (0.08) *** 

Observations 1,250,635 1,603,720 1,230,718 1,301,614 1,421,123 1,351,126 

Log Likelihood -6,349.625          -12,148.330 -2,981.162 -43,947.050 -13,055.390 -4,886.853 

 AIC 12,715.250          24,318.650 5,984.325 87,922.110 26,132.780 9,793.707 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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a cell without flood-risk. It is difficult to see the difference in variable importance between Table 2 and 

Table 3. Four graphs were made (Figure 5 and Figure 6) to give a clear view of the differences in driving 

forces for the long time period (urban pattern 2010) and the urban growth between 1990-2010. The 

differences are presented on the basis of two examples for Europe and Asia.  

Table 3 | AutoGLM logistic regression results for the urban growth between 1990-2010 

 

The variable importance graphs shown in Figure 5 and Figure 6 are based on the baseline logistic 

regressions (without stepwise elimination of variables), which is why more variables are shown than in 

the two tables above (The regression results of the baseline models can be found in appendix 8G). 

However, this does not change the relative importance of the variables shown in Table 2 and Table 3. 

The variable importance is based on the z values and is automatically scaled in such a way that the most 

important variable has an importance of 100. What immediately strikes us is what was already very 

clear in the table; namely that the urban area density is the most important variable. Looking at the 

change in variable importance for Europe between the long and the short time period shown in Figure 

5,  we see that the variables with the biggest changes are the travel time and the TRI. The travel time 

became nearly twice as important for the shorter and more recent study period and the TRI became 

relatively less important. We furthermore notice that the elevation became insignificant for the shorter 

study period. All other variables stayed relatively constant with an importance between 0 and 20.  

Urban Growth 1990-

2010 
Africa Asia Australia Europe North America South America 

Nr. of variables 7 11 7 10 6 5 

Urban Area Density  18.74 (0.42) *** 13.05 (0.26) *** 10.68 (0.45) *** 7.73 (0.13) *** 7.23 (0.21) *** 12.82 (0.45) *** 

Coastal UA. Density   -0.24 (0.05) ***  0.16 (0.02) *** 0.12 (0.03) *** -0.17 (0.07) ** 

Distance to river  -0.95 (0.09) *** -0.74 (0.1) ***  -0.24 (0.09) ***   

Elevation  -0.0002(0.0001)* -0.01(0.001) ***    

Slope  -0.12 (0.03) *** 0.13 (0.03) ***  0.05 (0.02) ***  -0.14 (0.04) *** 

TRI  -0.83 (0.05) *** 0.31 (0.10) *** -0.74 (0.04) *** -0.70 (0.03) ***  

Travel Time 0.353 (0.01) *** 0.27 (0.01) *** 0.42 (0.03) *** 0.19 (0.01) *** 0.39 (0.01) *** 0.40 (0.02) *** 

Protected Area  -1.79 (0.27) *** -1.36 (0.22) ***  -0.79 (0.09) ***   

Flood Prone Area  0.40 (0.09) *** -0.91 (0.31) *** 0.51 (0.06) *** -0.36 (0.12) ***  

Earthquake  0.06 (0.02) **  0.09 (0.03) *** 0.09 (0.01) *** -0.03 (0.01) **  

Landslide [EQ]  -0.55 (0.23) **      

Soil Class 6 -0.36 (0.18) **      

Soil Class 9      0.68 (0.12) *** 

Soil Class 10  -1.01 (0.14) ***     

Soil Class 15    0.20 (0.08) **   

Soil Class 16   -0.35 (0.23)    

Constant                                            -7.04 (0.06) *** -5.65(0.07) *** -7.53 (0.15)*** -5.58 (0.05) *** -6.02 (0.06) *** -8.99 (0.10) *** 

Observations 1,249,502 1,603,720 1,229,504 1,286,483 1,416,191 1,349,509 

Log Likelihood -5,233.067 -8,433.102 -1,909.135 -20,113.130 -8,530.248 -2,299.546 

AIC 10,482.130 16,890.200 3,834.269 40,248.260 17,074.500 4,611.092 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Figure 5 | Variable Importance Europe; Left: Urban Area 2010; Right: Urban Growth 1990-2010 

Comparing the variable importance graphs of Europe (Figure 5) and Asia (Figure 6), we notice that the 

distance to rivers is much more important in Asia. We also see the same increase in importance of travel 

time for the shorter time period in Asia, as we have seen in Europe.  Also, in Asia the importance of the 

remaining variables seems to be constant between both time periods.  

 
Figure 6 | Variable Importance Asia; Left: Urban Area 2010; Right: Urban Growth 1990-2010 

Now that we have analyzed the results of the importance and regional differences of driving forces, we 

can focus on the predictive power of the models themselves. When analyzing the performance statistics 

of the models as presented in Table 4 and Table 5, we are mainly interested in the out of sample 

precision and sensitivity. The overall agreement between the values for the training sample (within 

sample) and the test sample (out of sample) confirms the validity of our sampling procedure. As 

mentioned in the methodology section, the high overall accuracy is misleading due to the class 

imbalance with predominantly non-urban cells. The sensitivity or recall shows us how many of the 

urban cells have been classified correctly by the model. The lowest recall was achieved for Europe and 

Africa, where respectively only 48.7% and 49.5% of all urban sites have been correctly classified as 



RESULTS 

33 

urban by our model. The highest recall was attained for Australia and North America, where 

respectively 68.1% and 61.2% of all urban sites have been correctly classified. The precision (the 

proportion of the classified urban sites that were correctly identified as such) is high for all continents 

and ranges between 76.6% for Europe and 85.3% for Australia. This means that both the precision and 

recall are lowest for Europe and highest for Australia.  

Table 4 | Predictive power logit models (Outcome variable: Urban Area 2010) 

  Africa Asia Australia Europe North 
America 

South 
America 

Within sample 

Overall accuracy 0.999 0.998 0.999 0.990 0.998 0.999 

Recall (Sensitivity) 0.500 0.508 0.681 0.487 0.612 0.567 

Precision 0.809 0.789 0.854 0.768 0.821 0.790 

Out of sample 

Overall accuracy 0.999 0.998 0.999 0.990 0.997 0.999 

Recall (Sensitivity) 0.495 0.517 0.688 0.481 0.609 0.580 

Precision 0.809 0.783 0.853 0.766 0.822 0.802 

 

Table 5 shows that with the chosen set of driving forces it is harder to predict urban growth between 

1990 and 2010 than the urban pattern in 2010. Both sensitivity and precision are very low for all 

continents when the outcome variable is the urban change between 1990 and 2010. For Europe the 

sensitivity dropped to 4.4 %. 

Table 5 | Predictive power logit models (Outcome variable: Urban Growth 1990-2010) 

  Africa Asia Australia Europe North 
America 

South 
America 

Within sample 

Overall accuracy 0.999 0.999 1.000 0.997 0.999 1.000 

Recall (Sensitivity) 0.132 0.096 0.128 0.044 0.108 0.076 

Precision 0.442 0.366 0.344 0.285 0.343 0.288 

Out of sample 

Overall accuracy 0.999 0.999 1.000 0.996 0.999 1.000 

Recall (Sensitivity) 0.154 0.086 0.107 0.044 0.120 0.074 

Precision 0.458 0.334 0.283 0.287 0.358 0.255 

 

4.1 Results caret predictive modelling  

As explained in the methodological section, three different models are produced with the caret package: 

a logit model (the benchmark model), a penalized logit model, and a random forest model. The model 

is produced for Europe and Asia; Once with the complete sample dataset and once with an adapted 

version, in which the number of non-urban cells has been downsampled to match the number of urban 

cells. Selecting the optimal type and strength of penalization was left to the penalized logit model itself, 

an example of which is shown in Figure 7. We see that for each alpha (0, 0.5, 1) ten different values of 

lambda (regularization parameter on the x-axis) are tested. Eventually the combination of alpha and 

lambda with the highest AUC is selected to fit the model. The optimal combination differs per dataset 
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as can be seen in Table 6. The predictions made with the three models presented in this section will also 

be compared to the stepwise regression model from the previous section based on their precision and 

recall values. 

 

Figure 7 | Penalized logistic regression for Europe 1990-2010 with downsampled majority class 

 

Table 6 | Optimal parameters for the penalized logistic regressions 

  2010 1990-2010 

  alpha lambda Type of model alpha lambda Type of model 

Europe 
normal 0.5 0.111 Elastic net 0 0.111 Ridge 

down 1 0.0001 Lasso 1 0.0001 Lasso 

Asia 
normal 0.5 0.0001 Elastic Net 0 0.111 Ridge 

down 1 0.222 Lasso 0.5 0.0001 Elastic Net 
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Europe 

Figure 8 shows the performance results of the three models for the urban pattern in 2010 in Europe. 

The benchmark logit model archived a precision of 77% and a recall of 49%, which is very similar to 

the results of the stepwise regression with autoGLM (precision = 77%, recall = 48%). However, we can 

see in Figure 8 that the random forest model slightly surpasses the benchmark logit model with a 

precision of 78% and a recall of 53%. The parameters that yield the best penalized logit model for 

Europe are alpha = 0.5 and lambda = 0.111 (see Table 6). An alpha of 0.5 means that the penalized 

regression is a mix of lasso and ridge regression (elastic net), and a lambda of 0.111 means that the 

penalization of the coefficients was not very strong. The penalized logit model has a precision and recall 

of zero, which means no urban cells have been correctly or incorrectly classified. The AUC is in this 

case very misleading. The penalized logit model with a down sampled majority class is a lasso 

regression and performs better than the normal penalized model, however this is not clear in the figure. 

We notice that for the logit and random forest model, the AUC is lower when the majority class was 

down-sampled, due to a very low precision. Meanwhile, the recall is much higher for the models with 

down-sampled majority class. The F value shown in Figure 8 is the harmonic mean of the precision and 

recall.  

 
Figure 8 | Model performance Europe (Outcome variable: Urban Area 2010). Penalized logit = Elastic Net. 

Penalized logit down = Lasso.  

In Figure 9 the performance of the model predicting urban growth in Europe between 1990-2010 is 

shown. As expected, based on the previous results, the predictive power for the shorter time period is 

much lower than for the urban pattern in 2010. We can see in Figure 9 that the AUC of the random 

forest model is in turn the highest, although the recall is very low with 2%. The logit model and 

penalized logit model with downsampled majority class are respectively the second and third best 
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models. Compared to the random forest model the precision of both models is much lower in exchange 

for a high recall of 83%. The benchmark model with original class proportions performs worst in 

predicting urban growth between 1990-2010.  

 
Figure 9 | Model performance Europe (Outcome variable: Urban Growth 1990-2010). Penalized logit = Ridge. 

Penalized logit down = Lasso.  

In this context it is also important to show why a careful decision has to be made with regards to the 

model evaluation metric. If we for example would have chosen to evaluate the models based on the 

ROC as shown in Figure 10, we would have come to the conclusion that all models perform 

exceptionally well. The ROC for all models lies between 0.94 and 0.96. This is due to the fact that all 

models are especially good in predicting non-urban cells (specificity). The sensitivity is the same as the 

recall in Figure 9.  

 
Figure 10 | Model performance based on the ROC for urban growth in Europe between 1990 – 2010. Penalized 

logit = Ridge. Penalized logit down = Lasso. 
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Figure 11 shows what happens to the variable importance under down-sampling and penalization. The 

variable importance from the benchmark model (left figure in the top row) was already shown in the 

previous section for both time periods (see Figure 5). We saw that the urban area density, the travel 

time and the TRI were the three most important variables to predict whether a cell will be urbanized 

between 1990-2010. In Figure 5 we also saw that that the governance factor, that was disregarded by 

the step wise regression in part one, is within the five most important variables for the short time period 

between 1990-2010. For the longer time period the governance factor was less important, which is also 

retraceable in the regression results shown in appendix 8G. The coefficient from the governance index 

is positive and increased from 0.14 for the long period to 0.22 for the shorter and more recent period. 

When downsampling the majority class, the influence of the governance factor increases even more. A 

positive coefficient of 0.22 means that a cell with a positive governance index is 1.3 times as likely to 

be urbanized than a cell with a negative governance index. The interaction variable between the 

governance index and the protected areas was insignificant for both time periods, which means that 

there is no difference in the effect of protected areas between countries that have a positive or negative 

governance index.   

In the bottom row of Figure 11, the variable importance of the penalized regression model with and 

without downsampled majority class is shown. The variable importance is very similar to the 

benchmark logit model. The most striking result is the increased importance of the coastal urban area 

density. With the original class balance, the ridge penalty yields the model with the highest AUC. When 

the majority class is downsampled, the lasso penalty provides the best model, shown in Figure 7. The 

strength of both penalizations is low, so the influence of the variables has not changed much compared 

to the regular logit model. If the lasso penalty had been stronger, more variables would have been 

disregarded similar to the stepwise regression. That this is not the case shows us that all nearly included 

drivers, except for one in each model, are important to optimize the AUC.  

Asia 

Figure 12 and Figure 13 show the model performance for Asia for the long and short period, 

respectively. The confusion matrix with the exact values can be found in appendix 8G. The results for 

the long period are very similar to the results for Europe. The most important difference in this case is 

that the penalized logit models correctly predicted some of the urban cells. Again, the random forest 

model has the highest AUC with a score of 0.73. The models with downsampled majority class perform 

worse than the models with imbalanced classes. As we have seen in Europe's results, the precision goes 

down and the recall up when the majority class is downsampled. The highest precision is achieved by 

the random forest model with 97.4%, and the random forest model with balanced classes achieved the 

highest recall with 96.2%. The stepwise linear logit model for Asia form the first part of the analysis 

only achieved a precision and recall of 78.3% and 51.7%, respectively. The penalized logit model with 
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imbalanced classes performs similarly to the stepwise regression model with a precision and recall of 

79.1% and 51%, respectively. 

 

 

Figure 11 | Variable importance Europe (Urban Growth 1990-2010) for: normal Logit regression in the top row, 
penalized logit regression on the bottom row, down sampled majority class in the right column. 
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Figure 12 | Model performance Asia (Outcome variable: Urban Area 2010). Penalized logit = Elastic Net. 

Penalized logit down = Lasso. 

Generally, the results of the models that explain urban growth between 1990-2010 in Asia differ from 

the results for Europe. One similarity is that the random forest model achieves the highest AUC. In 

general, the AUC of all models is much lower that the AUC of the models for the longer period. 

Different for this continent is that the penalized logit model and penalized logit model with balanced 

classes have the second and third best performance.  

 
Figure 13 | Model performance Asia (Outcome variable: Urban Growth 1990-2010). Penalized logit = Ridge. 

Penalized logit down = Elastic Net. 

As discussed in the methodological section, the last performance measure of interest is the log-loss that 

is in compared to the AUC also based on class prediction probabilities. A lower log-loss value is 

associated with a better model. Table 7 shows that the random forest model performs worst for both 
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continents and both time periods. This is exactly opposite to the evaluation based on the AUC, where 

the random forest showed to be the best model. The best performing models for both time periods in 

Europe and for the short time period in Asia are the logit and penalized logit models. The penalized 

logit model describing the urban pattern in Asia has the best performance with a log-loss of 0.86. This 

is the only case in which the penalized logit model performs better than the logit model.  

Table 7 | Results log-loss statistic for Asia and Europe.  

 Asia Europe 

 1990-2010 2010 1990-2010 2010 

Logit 8.87 8.16 7.01 6.03 

Logit (down) 3.25 3.81 2.33 2.97 

Penalized Logit 6.90 7.69 5.74 4.23 

Penalized Logit (down) 3.30 0.86 2.32 2.90 

Random Forest 14.44 18.06 11.87 9.86 

Random Forest (down) 4.41 6.32 3.53 4.60 

 

5 DISCUSSION  

This master thesis set out with the aim to analyze the effect driving forces have on locational urban 

growth and how these drivers differ regionally. Understanding these drivers can improve global urban 

growth models and enable better predictions of city expansion patterns. As mentioned in the literature 

review, so far, no global urban growth models exist that incorporate regionally specific drivers. In 

reviewing the current literature on locational urban growth, initial insights were gathered on which 

drivers play an essential role in urban growth and how those drivers might differ per region. For this 

study, specific binary logistic classification models have been used to analyze continental differences 

of driving forces. A stepwise regression based on the optimization of the AIC was performed to find a 

parsimonious model per continent without introducing too much bias.  

The stepwise regression analysis results have shown that the number of variables kept in the model to 

get the most parsimonious fit differs per continent. The stepwise regression was performed with the 

open-source R-package AutoGLM, which proved to be very useful and reliable in performing the 

regressions with vast datasets. The model fit based on the AIC has shown that the models produced 

with AutoGLM for Africa, Australia and South America outperform the ones for Asia, Europe, and 

North America. The model fit for Europe is by far the worst, which is in line with existing findings that 

forecasting models become less accurate for countries or regions with highly developed urban areas. 

Overall, all variables apart from landslides triggered by earthquakes have, at least in one continent, 

significantly contributed to the predictive power of the model. The most important driver of urban 

growth in all continents is the density of surrounding urban sites. This is in line with our expectation of 
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a strong spatial autocorrelation of urban areas. The positive effect surrounding urban sites have on urban 

growth seems less strong in Europe and North America. Again, this is in line with our expectations, as 

the literature review has shown that urban sprawl becomes more important in highly developed 

continents like Europe and North America (Wolff, Haase and Haase, 2018). The literature review shows 

that the density of the built-up area has a negative effect on the case study for Silicon Valley in North 

America (Reilly, O'Mara and Seto, 2009). This is not confirmed to be true for the whole continent by 

our results. This thesis' findings have shown that the coastal urban area density has a positive impact in 

Europe and North America and a negative impact in Asia. This could be due to the large number of city 

metropole areas near the coast in Europe and North America. 

Other variables that were found to be important in all continents are the TRI, which has a negative 

effect, and the travel time with a positive effect on urban growth. The negative correlation between an 

increasing TRI and urban growth and be easily explained, as less homogeneous terrain makes it 

physically more difficult to build cities. As described in the theoretical background on driving forces, 

the travel time to the city center is often used as a proxy for economic drivers such as consumer 

demands, market structure and even employment potential (Veldkamp and Lambin, 2001). The results 

of a positive correlation between the travel time variable and urban growth in all continents, confirm 

the high importance of economic drivers and second nature agglomeration forces for urban growth. The 

travel time therefore forms a very abundant room for future research to make further use of this 

opportunity. Other variables that could be included next to the travel time to the nearest city center are, 

for example, travel time to the nearest city edge or the travel time to the nearest employment center, as 

in many large cities these are relatively far away from the city center (Angel and Blei, 2016).  

The second variable referring to surrounding land-use is the coastal urban area density. Inferring from 

the results, this variable is less important than the urban area density. To disentangle the effect the 

distance of the coast has on urban growth, we would advise for further research to include the distance 

to coast as a sole variable.  In accordance with the literature review, the results of this thesis have shown 

that some drivers can have a positive, as well as negative effect on urban growth depending on the 

continent. Examples are in our case the soil type 16 and the presence of flood risk. These findings 

emphasize the need for regionally specific drivers in global urban growth models.  

The theoretical and empirical background has made it clear that political drivers are very important for 

urban growth (Hersperger et al., 2018). Nevertheless, they are often underrepresented in urban growth 

studies, especially on a global scale (Seto et al., 2011). For this reason, the governance index based on 

the WGT dataset of the World Bank has been included in the analysis. In addition to the governance 

index, an interaction variable of the protected areas and the governance index was included. The 

hypothesis was that urban growth in countries with a negative governance index would be less restricted 

by protected areas. The results show that neither the governance index nor the interaction variable have 

been kept in the parsimonious models obtained with the stepwise regression in AutoGLM. This shows 
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us that there is no difference in the effect of protected areas between countries with a positive or negative 

governance index. Protected areas had a strong negative effect on the probability of urban growth, in 

all continents except South America. Comparing the stepwise regression results with the benchmark 

model containing all variables, we see that the governance factor itself is significant, although not very 

important, which is probably why the index was dropped during the stepwise regression.  

One of the crucial findings from the literature review was that driving forces vary for different time 

periods of urban growth (Vermeiren et al., 2012). Furthermore, it became clear that most studies that 

project future urban growth base their statistical analysis of driving forces on a short and recent time 

period. Since the goal of this thesis is to contribute to the improvement of urban growth models, the 

first analysis was repeated for a second, much shorter and more recent time period. As with previous 

studies, in our case the driving forces vary between the two time periods. Maybe even more interesting 

than the difference in driving forces was the overall difference in model fit and predictive power of the 

model between the two time periods. As was shown in the results, the models for each continent were 

relatively good in predicting the urban pattern in 2010, that is urban growth over an extremely long 

period. Meanwhile using the same explanatory variables models were performing poorly in predicting 

urban growth over the in comparison short period of twenty years between 1990 and 2010. The most 

obvious explanation for this difference in explanatory power is the nature of the included driving forces. 

As mentioned, policy, economic and technical drivers are very much underrepresented in most urban 

growth studies, as in this study. It has already been suggested in the explanation of urban agglomeration 

forces, that second nature causes have become more important over the last couple of decades. Urban 

growth between 1990 and 2010 is therefore way harder to predict, as unmeasurable forces like 

agglomeration and path dependency are becoming determining forces.  

To improve urban growth models, it is essential to better understand more recent urban growth 

developments. Therefore, more drivers from categories besides natural drivers need to be included in 

future regression analyzes. One possibility, namely additional travel time variables, has already been 

mentioned. The governance index has also shown potential and should therefore be improved on and 

included in future analyzes. Other variables that could be included in follow-up studies to improve the 

models’ predictive power are autologistic specifications to different kinds of land-use besides urban 

areas. Examples of such variables used in other studies are the proportion of farmland and the proportion 

forest/nature in surroundings cells (Braimoh and Onishi, 2007). Ideally the effect of surrounding land-

use is tested on different distances, Another variable that could improve the current analysis and detect 

new urban sites is in density of rural population (Li, Sun and Fang, 2018).   

The second part of the study was more focussed on the methodological element of the analysis. The 

goal of the second part of the analysis was to compare different methodological approaches and 

determine which one is best applied for urban growth studies. Therefore, the results of the stepwise 

regression have been compared to a benchmark binary logit model and a penalized binary logit model 
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produced with a more sophisticated approach. Results have shown that, with the stepwise regression, a 

model generally outperforms the benchmark logit model. This means that the first approach with 

autoGLM indeed finds a parsimonious model including only significant variables with quite an 

impressive predictive power. For Asia as well as Europe, the penalized regression results were very 

similar to the stepwise regression results. The penalized regression therefore does not seem to have an 

advantage over the stepwise regression for our study with the chosen set of variables.  

Most studies analyzed during the literature review used the ROC value to compare model performance 

(Braimoh and Onishi, 2007; Poelmans and Van Rompaey, 2009; Vermeiren et al., 2012; Li, Sun and 

Fang, 2018). Our study suggests that this is not always the most informative and transparent evaluation 

method, especially in the case of large class imbalances, as was the case for our data. If the class of 

interest is in the minority class, the area under the precision-recall curve (AUC) gives a more accurate 

picture of model performance. This should always be considered when comparing results of different 

studies. Because of the large class imbalance between urban and non-urban cells, we tested if the 

model’s performance would improve when the majority class of non-urban cell was downsampled. 

Downsampling did not improve the overall performance of the models. We have seen that 

downsampling causes the overall precision to decrease in exchange for an increased recall value. This 

is an interesting finding as it signals that downsampling could be a good tool if the main expectation of 

a model is to archive a high recall value.  

Once again, the literature study showed that in situations where the relationship between variables is 

very complex, non-linear models such as the random forest model achieve better results than linear 

models (Couronné, Probst and Boulesteix, 2018; Kirasich, Smith and Sadler, 2018). Results have shown 

that indeed the random forest model has the highest AUC in both time periods. To calculate the AUC, 

a cut-off value of 0.5 was used to determine whether a cell would be urban or non-urban. For future 

studies it is recommended explore different cut-off value as a means to improve the classification 

models. Random forest models are not often applied in urban growth models. One reason is that it is 

very difficult to interpret coefficients for the individual drivers. However, if the end goal of a study is 

to model future growth, and not necessarily to understand historical urban growth, this might be less 

important or even unnecessary. Another very surprising result is that, based on the log-loss function, 

the random forest model performs the worst of the three model. Based on the log-loss function the logit 

and penalized logit models with balanced classes actually perform best.  

Discussing all these different results shows that the analysis offers a great starting point for further 

research into the optimal calibration of urban growth models. We have seen that it is extremely 

important for the research to determine what the ultimate goal of the model is when choosing a 

methodological approach and evaluation method.  
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6 CONCLUSION  

This master thesis aimed to analyze the driving forces determining locational urban growth and their 

regional differences. This analysis was done with an automated stepwise regression. The main purpose 

was to find a parsimonious model that describes the relationship between the urban pattern in 2010 and 

several driving forces. The results have shown that the number and kind of drivers influencing urban 

growth differ per continent. Furthermore, the same drivers can have a positive as well as a negative 

influence on urban growth, depending on the continent. The predictive power of the models is also 

different for each continent, with the most considerable predictive power for Australia. The predictive 

power of all models decreases dramatically when the urban growth between 1990-2010 is modelled 

instead of the urban pattern in 2010. This shows that the set of chosen driving forces is only suitable to 

predict urban growth over a long period and not over a short and, importantly, more recent time period. 

This should be considered when using the regression results to forecast future urban growth.  

The secondary research aim was to further investigate possible methodological approaches to improve 

the predictive power of the models. Therefore, a penalized regression was used, that, like the stepwise 

regression, tries to create a parsimonious model in exchange for an acceptable amount of bias. The 

stepwise and penalized logit regression models were compared to a random forest model to see if the 

complex relationship between driving forces and urban growth would be better described with a non-

linear model. The results from this second part of the analysis have brought us to several important 

conclusions. First, the results from the penalized regression are nearly identical to the results from the 

stepwise regression, both of which are an improvement over the regular binary logit model without 

elimination variables. Second, the metric on which the models are evaluated is essential in deciding 

which model preforms best, and therefore needs sufficient consideration. We argue and show that the 

area under the recall precision curve is the best evaluation metric in the case of unbalanced classes. The 

last major finding is that the random forest model surpasses both logit models.  

Taken together, the results suggest that a regional differentiation of driving forces is urgently needed 

for global urban growth models. Furthermore, more economical and political drivers are needed to 

understand more recent urban development and eventually be able to predict future urban growth. 

Finally, the application of non-linear models has shown great potential and should, therefore, be further 

investigated.  
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8 APPENDIX  

A List of variables  

 

6 US Geological Survey, 1996. Global Digital Elevation Model (GTOPO30). EROS Data Center Available at 
https://lta.cr.usgs.gov/GTOPO30. 

7 Jarvis A., Reuter, H.I., Nelson, A., Guevara, E., 2006. Hole-filled SRTM for the globe version 3, from the CGIAR-CSI 
SRTM 90m database. Available from http://srtm.csi.cgiar.org.  

8 https://ghsl.jrc.ec.europa.eu  

Category Variable Description Source 

Nature/ 
Spatial 
configuration 

Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Slope in degrees.  GTOPO30 (USGS, 19966) 

Elevation Elevation in meters.  SRTM V3 (Jarvis et al., 20067) and 
GTOPO30 (USGS, 1996) 

Terrain 
roughness 
index 

Index for the overall ruggedness of a grid cell, based on 
slope and elevation.  

Calculated based on method by Riley, 
Degloria and Elliot (1999) with Slope and 
Elevation datasets mentioned above.  

Soil type Type of soil. Overview of the different soil types in 
appendix 0.  Harmonized World Soil Database (HWSD) 

Urban Area 
Density 

Presence of urban land-use in the surrounding grid cells 
in a radius from 0 to 10 kilometers. Global Human Settlement layer (GHSL)8 

Coastal Urban 
Area Density 

Density of urban area weighted for its distance to both 
the central cell and the coastline (weights turn 0 after 
20km). 

Global Human Settlement layer (GHSL) 

Landslides 
(Earthquakes) Presence of landslides triggered by earthquakes.  

Global Risk Data Platform 
(https://preview.grid.unep.ch/index.php?p
review=data&events=landslides&evcat=1&
lang=eng ) 

Landslides 
(Precipitation) Presence of landslides triggered by precipitations. 

Global Risk Data Platform 
(https://preview.grid.unep.ch/index.php?p
review=data&events=landslides&evcat=2&
lang=eng) 

Earthquakes Earthquakes Modified Mercalli Intensity 

Global Risk Data Platform 
(https://preview.grid.unep.ch/index.php?p
review=data&events=earthquakes&evcat=
3&lang=eng)  

Flood Prone 
Areas Areas with a risk of a flood once in 100 years.  GLOFRIS/inun_oecd_2010_RP100_area 

Distance to 
rivers Distance from each grid cell to nearest river. 

hydroRivers 
https://www.hydrosheds.org/page/hydrori
vers 

Politics 

Protected 
areas 

Binary variables. Cell has the value 1 if the cell contains 
an area under protection and value 0 otherwise. 

World database on protected areas 
(WDPA). https://www.protectedplanet.net  

Governance 
Indicator 

“Governance consists of the traditions and institutions by 
which authority in a country is exercised.  This includes 
the process by which governments are selected, 
monitored and replaced; the capacity of the government 
to effectively formulate and implement sound policies; 
and the respect of citizens and the state for the 
institutions that govern economic and social interactions 
among them.” (Kaufman and Kraay, 1999) 

Worldwide governance indicators ( 
https://info.worldbank.org/governance/wg
i/)  

Economy Travel Time 

Index value of the travel time in minutes to the nearest 
city center. The index ranges from 0 to 12, 12 
representing the exact center of a city center and 12 all 
grid cells with a travel time that exceeds 60 minutes to 
the city center.  

Based on road data (Global Roads 
Inventory Project (GRIP) dataset v1) and 
urban clusters with more than 50.000 
people. 
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B Urban growth 1990 – 2010  

Excerpt from GeoDMS showing the urban growth of Amsterdam (The Netherlands) and surroundings 

between 1990-2010. The darkest blue cells (3) were already urban before 1990. These cells have been 

excluded from the analysis. The lighter blue cells  (2) changed from non-urban to urban between 1990-

2010.  

 

C Correlation Matrices  

  

Figure 14 | Correlation matrix Africa (left) and Australia (right) - Urban area 2010 
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Figure 15 | Correlation matrix North America (left) and South America (right) - Urban area 2010 

 

Figure 16 | Correlation matrix Africa (left) and Australia (right) - Urban growth 1990 - 2010 

 

Figure 17 | Correlation matrix North America (left) and South America (right) - Urban growth 1990 - 2010 
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D R code for predictive modelling  

Custom control 

functions  

 

 

Custom tuning 

grid ElasticNet  

 

Custom tuning 

grid Random 

Forest  
 

 

E Continent Codes: GeoDMS Legend  

Total number of observations before continental split:  203,391,149 observations of 19 variables  

Continent Code Observations without NA Sample Size 

Africa 0 36,031,563 0.15 

Antarctica 1 - - 

Asia 2 42,765,854 0.15 

Australia 3 9,845,739 0.5 

Europe 4 10,804,034 0.5 

North America 5 37,898,362 0.15 

Oceania 6 - - 

South America 7 21,618,023 0.25 

 
Table 8 | Proportion of cells that changed from non-urban to urban between 1990-2010 

Continent Urban 1990-2010 Non-urban Total 

Africa 3,722 (0.07 %) 4,994,288 4,998,010 

Asia 6,595 (0.10 %) 6,382,477 6,389,072 

Europe 16,901 (0.33 %) 5,129,032 5,145,933 
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F Legend Soil Database 

Label Code Description from FAO/IIASA/ISRIC/ISS-CAS/JRC (2009) 

'Acrisols' '1' Soils with subsurface accumulation of low activity clays and low base saturation 

'Alisols' '2' Soils with sub-surface accumulation of high activity clays, rich in exchangeable aluminum 

'Andosols' '3' Young soils formed from volcanic deposits 

'Arenosols' '4' Sandy soils featuring very weak or no soil development 

'Anthrosols' '5' Soils in which human activities have resulted in profound modification of their properties 

'Chernozems' '6' Soils with a thick, dark topsoil, rich in organic matter with a calcareous subsoil 

'Calcisols' '7' Soils with accumulation of secondary calcium carbonates 

'Cambisols' '8' Weakly to moderately developed soils 

'Fluvisols' '9' Young soils in alluvial deposits 

'Ferralsols' '10' Deep, strongly weathered soils with a chemically poor, but physically stable subsoil 

'Gleysols' '11' Soils with permanent or temporary wetness near the surface 

'Greyzems' '12' Acid soils with a thick, dark topsoil rich in organic matter 

'Gypsisols' '13' Soils with accumulation of secondary gypsum 

'Histosols' '14' Soils which are composed of organic materials 

'Kastanozems' '15' Soils with a thick, dark brown topsoil, rich in organic matter and a calcareous or gypsum-rich 
subsoil Very shallow soils over hard rock or in unconsolidated very gravelly material 

'Leptosols' '16' Very shallow soils over hard rock or in unconsolidated very gravelly material 

'Luvisols' '17' Soils with subsurface accumulation of high activity clays and high base saturation 

'Lixisols' '18' Soils with subsurface accumulation of low activity clays and high base saturation 

'Nitisols' '19' Deep, dark red, brown or yellow clayey soils having a pronounced shiny, nut-shaped structure 

'Podzoluvisols' '20' Acid soils with a bleached horizon penetrating into a clay-rich subsurface horizon 

'Phaeozems' '21' Soils with a thick, dark topsoil rich in organic matter and evidence of removal of carbonates 

'Planosols' '22' Soils with a bleached, temporarily water-saturated topsoil on a slowly permeable subsoil 

'Plinthosols' '23' Wet soils with an irreversibly hardening mixture of iron, clay and quartz in the subsoil 

'Podzols' '24' Acid soils with a subsurface accumulation of iron-aluminum-organic compounds 

'Regosols' '25' Soils with very limited soil development 

'Solonchaks' '26' Strongly saline soils 

'Solonetz' '27' Soils with subsurface clay accumulation, rich in sodium 

'Vertisols' '28' Dark-coloured cracking and swelling clays 

'Rock Outcrop' '29' 

Removed from the analysis 

'Sand Dunes' '30' 

'Water Bodies' '31' 

'Urban, mining, etc.' '32' 

'Salt Flats' '33' 
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G Additional Results  

Table 9 | Regression result GLM (logit) with caret for Europe (Urban Area 2010) 

Generalized Linear Model (Logit) 

Europe; Urban Area 2010       
  Estimate Std. Error z value Pr(>|z|)   
(Intercept) -5.99 0.02 -357.3 < 2e-16 *** 
Elevation 0.37 0.02 18.0 < 2e-16 *** 
Slope 0.35 0.02 17.7 < 2e-16 *** 
TravelTime 0.13 0.01 25.7 < 2e-16 *** 
TRI -1.79 0.03 -56.6 < 2e-16 *** 
UrbanAreaDensity 0.89 0.004 202.5 < 2e-16 *** 
CoastalUrbanAreaDensity 0.06 0.003 20.1 < 2e-16 *** 
CODE_class.7 0.16 0.01 18.7 < 2e-16 *** 
CODE_class.15 0.05 0.01 4.4 1.13E-05 *** 
CODE_class.16 0.03 0.01 4.1 3.58E-05 *** 
CODE_class.23 -0.03 0.01 -2.5 0.014259 * 
IsProtected -0.27 0.01 -22.3 < 2e-16 *** 
FloodProneArea 0.02 0.01 3.4 0.000655 *** 
Earthquakes 0.18 0.01 23.7 < 2e-16 *** 
Distance2River -0.07 0.01 -8.0 1.61E-15 *** 
Gov_Factor 0.14 0.01 15.5 < 2e-16 *** 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
AIC: 177596     
Null deviance: 402405 on 2603227  degrees of freedom     
Residual deviance: 177564 on 2603212  degrees of freedom    

 

Table 10 | Regression result GLM (logit) with caret for Europe (Urban Growth 1990-2010) 

Generalized Linear Model (Logit) 

Europe; Urban growth 1990-2010      
  Estimate Std. Error z value Pr(>|z|)   
(Intercept) -7.02 0.03 -253.8 < 2e-16 *** 
Elevation 0.01 0.04 0.2 0.810015   
Slope 0.21 0.04 5.6 2.42E-08 *** 
TravelTime 0.36 0.01 49.5 < 2e-16 *** 
TRI -1.40 0.05 -27.4 < 2e-16 *** 
UrbanAreaDensity 0.27 0.003 84.9 < 2e-16 *** 
CoastalUrbanAreaDensity 0.02 0.002 9.7 < 2e-16 *** 
CODE_class.7 0.10 0.01 7.6 3.75E-14 *** 
CODE_class.15 0.07 0.02 4.0 5.87E-05 *** 
CODE_class.16 -0.02 0.01 -1.9 0.051531 . 
CODE_class.23 -0.03 0.02 -1.5 0.122548   
IsProtected -0.25 0.02 -13.4 < 2e-16 *** 
FloodProneArea 0.07 0.01 10.5 < 2e-16 *** 
Landslides_Earthquakes -0.21 0.06 -3.7 0.000209 *** 
Landslides_Precipitation 0.05 0.02 2.7 0.00786 ** 
Earthquakes 0.17 0.01 14.2 < 2e-16 *** 
Distance2River -0.08 0.02 -5.1 3.37E-07 *** 
Gov_Factor 0.22 0.02 13.7 < 2e-16 *** 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
AIC: 81071     
Null deviance: 113529 on 2572966  degrees of freedom    
Residual deviance:  81035 on 2572949  degrees of freedom    
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Table 11 | Regression result GLM (logit) with caret for Asia (Urban Growth 1990-2010) 

Generalized Linear Model (Logit) 

Asia; Urban growth 1990-2010      
  Estimate Std. Error z value Pr(>|z|)   
(Intercept) -8.87 0.07 -134.63 < 2e-16 *** 
Elevation -0.71 0.11 -6.51 7.53E-11 *** 
Slope 0.03 0.09 0.36 0.71889   
TravelTime 0.22 0.00 46.08 < 2e-16 *** 
TRI -1.55 0.08 -19.23 < 2e-16 *** 
UrbanAreaDensity 0.18 0.00 69.35 < 2e-16 *** 
CoastalUrbanAreaDensity -0.01 0.00 -3.30 0.00096 *** 
CODE_class.10 -0.28 0.03 -9.93 < 2e-16 *** 
CODE_class.15 0.04 0.04 1.07 0.28601   
IsProtected -0.47 0.05 -9.38 < 2e-16 *** 
FloodProneArea 0.03 0.01 2.16 0.03114 * 
Landslides_Earthquakes -0.13 0.04 -3.23 0.00126 ** 
Landslides_Precipitation 0.07 0.03 2.08 0.03769 * 
Earthquakes 0.19 0.02 9.07 < 2e-16 *** 
Distance2River -0.56 0.05 -11.42 < 2e-16 *** 
Gov_Factor -0.20 0.02 -12.70 < 2e-16 *** 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
AIC: 34427     
Null deviance: 51946 on 3194536  degrees of freedom    
Residual deviance: 34395 on 3194521  degrees of freedom    

 

Table 12 | Confusion matrix for the models explaining urban growth in Asia between 1990-2010 

term glm glm_down 

Pen. Glm. 
(alpha = 0, 
lambda = 
0.1112) 

Pen. Glm. 
(a=0.5, 

l=0.0001 
rf rf down 

accuracy 0.999 0.972 0.999 0.966 0.999 0.956 

kappa 0.140 0.058 0.007 0.048 0.104 0.040 

sensitivity 0.088 0.874 0.004 0.883 0.057 0.942 

specificity 1 0.972 1 0.9657 1 0.9560 

pos_pred_value 0.358 0.031 0.500 0.026 0.551 0.022 

neg_pred_value 0.999 1 0.999 1 0.999 1 

precision 0.358 0.031 0.5 0.026 0.551 0.022 

recall 0.088 0.874 0.004 0.883 0.057 0.942 

f1 0.141 0.060 0.007 0.050 0.104 0.042 

prevalence 0.001 0.001 0.001 0.001 0.001 0.001 

detection_rate 0.000 0.0009 0.000 0.001 0.0001 0.001 

detection_prevalence 0.000 0.029 0.000 0.035 0.0001 0.045 

balanced_accuracy 0.544 0.923 0.502 0.924 0.529 0.949 
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Table 13 | Confusion matrix for the models explaining urban growth in Europe between 1990-2010. 

term glm glm_down 

Pen. 
Glm.(alpha = 
0, lambda = 

0.111) 

Pen. Glm. 
(alpha = 1, 
lambda = 
0.0001) 

rf rf down 

accuracy 0.996 0.937 0.997 0.936 0.997 0.904 

kappa 0.076 0.074 0.002 0.073 0.040 0.052 

sensitivity 0.044 0.831 0.001 0.835 0.021 0.902 

specificity 0.9996 0.937 1 0.936 1 0.904 

pos_pred_value 0.280 0.042 0.643 0.041 0.648 0.030 

neg_pred_value 0.9969 1 0.997 1 0.997 1 

precision 0.280 0.042 0.643 0.041 0.648 0.030 

recall 0.044 0.831 0.001 0.835 0.021 0.902 

f1 0.077 0.080 0.002 0.079 0.040 0.058 

prevalence 0.003 0.003 0.003 0.003 0.003 0.003 

detection_rate 0.0001 0.0027 0.000 0.003 0.0001 0.003 

detection_prevalence 0.0005 0.065 0.000 0.066 0.0001 0.099 

balanced_accuracy 0.522 0.884 0.501 0.885 0.510 0.903 

 


