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FOREWORD 

 

This report is the outcome of my bachelor’s thesis earth sciences, economics and sustainability at the 

Vrije Universiteit Amsterdam. I would like to thank Dr. Eric Koomen for his guidance and support 

throughout the research. I would also like to thank Renato Stopic and Eduardo Dias for their support 

and for the chance to take seat in their office. Finally, I would like to thank Sommalife, and more 

specifically Joost Westerhout, for his feedback and expert knowledge on the study area. 

This report summarizes the findings of my study on the forest cover changes and driving forces behind 

them. This report could be used to improve forest management in Upper West and could also be used to 

assist future studies in Northern Ghana on the topic. 

 

 

ABSTRACT 

 

Forests are a key source of the world’s carbon and without them life on earth would be essentially 

unsustainable. Recent global studies show that Upper West, Ghana has not subject to deforestation the 

past decade. However satellite image analysis have shown severe forest cover changes in the region in 

the 2014-2022 period. The aim of this study was to explain deforestation in Upper West using a logistic 

regression and predict future locations for deforestation based on expected driving forces, and has done 

so successfully. Forest density is strongly correlated with deforestation, with denser forests having 

higher probability of deforestation. Population also showed strong positive correlation with 

deforestation, indicating that population growth leads to more deforestation. Poor government policies 

also lead to more deforestation in the region as was confirmed by a positive correlation between 

protected areas and deforestation. The logistic regression was used to create a prediction for future 

deforestation with satisfactory level of confidence and can be used to help policy makers prevent 

deforestation in the future.  
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1. INTRODUCTION 

With 294 Gt of carbon stored in forest cover, 42 Gt in dead wood, and 324 Gt in soils and litter, forests 

are a key source of the world's carbon (FAO, 2010). According to studies, the estimated 658 Gt total 

carbon content of the world's forests in 2009 was higher than the amount of carbon present in the entire 

atmosphere (FAO, 2011). This shows that without forests, life on earth would be essentially 

unsustainable. Many economic activities such as mining, wood logging and farming continuously 

contribute to the degradation of these forests (Fagariba, Song, & Soule, 2018). Global deforestation has 

a huge effect on the climate and was estimated to cause 20% of the annual greenhouse gas emissions 

between 1990 and 2005 (Gupta, 2012).  

Approximately 90% of African nations rely on agriculture and forest products directly or indirectly for 

economic and food security (Nielsen & Reenberg, 2010). One of these countries is Ghana, which is the 

country this report will focus on. About two thirds of Ghana is covered by savannah (Vedeld, Angelsen, 

Bojö, Sjaastad, & Berg, 2007). Roughly 6% of Ghana’s total savanna zone is permanently forested, and 

roughly 50% is unreserved savanna woodland (Adusei & Dunyah, 2016). A study by Etwire et al. has 

revealed that Ghana has already lost about 80% of it’s forest cover in a century (2013). With an average 

annual deforestation rate of 75,000 hectares, the original forest cover of 8.2 million hectares has been 

drastically reduced to about 1.7 million hectares (Acquah & Onumah, 2011). The direct causes for 

deforestation in Ghana are charcoal burning, hunting, agriculture, overgrazing and wood logging 

(Fagariba, Song, & Soule, 2018). The biggest indirect causes for deforestation in northern Ghana are 

population growth and a lack of an alternative livelihood (Fagariba, Song, & Soule, 2018). 

The focus in this report will be on the Upper West region in Ghana, an area which is mostly covered by 

savannah areas. A lot of indigenous communities in this region rely on shea trees as an economic income. 

These trees produce shea nuts, which can be used to make shea butter. Shea butter has gained popularity 

recently, especially in western nations where it is primarily utilized in cosmetics for hair and skincare 

goods (Grand View Research, 2022). The communities that harvest these nuts mostly live in unprotected 

savannah areas, which means the trees in these areas can be cut down without any consequences 

(Sommalife, 2023). Sommalife, a non-profit organization in Ghana that helps communities get fair 

prices for shea butter, states that this is a threat to the livelihood of many of these communities (2023). 

Previous global studies show that there is no forest left in Upper West and that this has been the case for 

the past decade (Global Forest Watch, 2023).  However forest cover maps that were generated from 

Landsat 8 imagery show that forest cover has changed in the past decade (van 't Hof, 2023). As this 

forest cover loss was previously unknown there are no previous studies about the driving forces behind 

this deforestation. This study aims to explain Northern Ghana’s deforestation using spatially explicit 

driving forces. This information can then be used to predict future deforestation, which is very helpful 

in creating a more targeted approach at protecting Northern Ghana’s savannah forests. 

The following research question and sub-questions are attempted to be answered in this research: ‘How 

has deforestation in Northern Ghana changed over the past decade, as revealed through analysis of 

satellite imagery, and how can this deforestation be explained using spatially explicit driving forces? 

Sub questions: 

- ‘Which spatially explicit driving forces are expected to drive forest loss in Northern Ghana?’  

- ‘Where does Northern Ghana lose forest cover? 

- ‘How can local forest loss be explained using spatially explicit driving forces?’  
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2. DATA & METHODOLOGY 

This study aims to predict the spatial deforestation probability and explain the relationship between this 

process and driving factors. For this a statistical analysis using a logistic regression will be used.. The 

dependent variable in this regression will be deforestation and the independent variables are the 

expected driving forces. The data & methodology that was used for the variables is explained in detail 

in this chapter. 

2.1 DEFORESTATION 
 

Forest cover maps from the years 2014, 2018 and 2022 were used to generate deforestation maps. These 

forest cover maps have been generated previously with a machine learning algorithm using Landsat 8  

and Google Earth Pro imagery. This process has been discussed in detail in a technical report (van 't 

Hof, 2023). In short, Landsat 8 images from 2014, 2018 and 2022 have been classified by a random 

forests classification model into four different forest cover classes: no forest (<5% tree cover), sparse 

forest (5-25% tree cover), semi-dense forest (25-50% tree cover) and dense forest (>50% tree cover). 

High resolution images from Google Earth Pro were used as reference data to train the random forests 

model. The model classified the Landsat 8 images with accuracies of 72%, 80% and 77% for 2014, 2018 

and 2022 respectively. These accuracies are comparable to similar studies (Borges, Higginbottom, 

Symeonakis, & Jones, 2020). 

To create a landcover change map from the forest cover maps the raster calculator was used with the 

following expression: 

10 ∗ 𝐹𝑜𝑟𝑒𝑠𝑡𝑐𝑜𝑣𝑒𝑟 2014 + 𝐹𝑜𝑟𝑒𝑠𝑡𝑐𝑜𝑣𝑒𝑟 2022 

The forest cover maps include discrete values between 1 and 4 that each correspond to a forest cover 

class. In this a 1 corresponds to ‘dense forest’, a 2 to ‘semi-dense forest’, a 3 to ‘sparse forest’ and a 4 

to ‘no forest’. The expression generates a new raster that shows a number between 11 and 44, with the 

first number being the forest cover class of 2014 and the second number being the forest cover class of 

2022. This means that a pixel with the value 13 has gone down 2 classes, from ‘dense forest’ to ‘sparse 

forest’. This raster was then reclassified to 7 new classes to create a map of the forest cover change as 

can be seen in the Table 1.   

As one of the goals of this study is to predict the locations for deforestation the regression only included 

the areas that have experienced a decrease in forest cover. To do this the raster was reclassified to 0’s 

and 1’s, with 0 being no deforestation and 1 being deforestation.  
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2.2  EXPLANATORY VARIABLES 
 

2.2.1 Literature review 

 

As briefly mentioned in the introduction, the most important direct causes for deforestation in Northern 

Ghana are agriculture, wood logging and charcoal burns (Fagariba, Song, & Soule, 2018). And the 

biggest indirect causes are population growth, poor government policies and the lack of an alternative 

livelihood (Fagariba, Song, & Soule, 2018). With this knowledge and a literature review on studies that 

also use spatially explicit driving forces to explain deforestation a list of expected driving forces has 

been constructed in Table 2. Figure 1 also gives an indication of the spatial dispersion of some of the 

expected driving forces 

Slope and elevation are expected explanatory variables for deforestation in this study and can be linked 

to the direct causes of deforestation. A steeper slope for example makes it less likely that agricultural 

land use will occur (Oğuz, 2020). Multiple previous studies have shown significant correlation between 

slope, elevation and deforestation (Bavaghar, 2015; Gayen & Saha, 2017), which make them interesting 

variables to include in the regression. 

Forest density and distance to forest edge are used as potential explanatory variables for deforestation 

in this study. Distance to forest edge is a variable that is often used in similar studies that look at driving 

forces behind deforestation (Gayen & Saha, 2017; Kucsicsa & Dumitrica, 2019; Saha, et al., 2020). 

Forest density is not used that often in similar studies. But forest density, just like the distance to a forest 

edge, can be linked to the direct causes of deforestation in Northern Ghana. Mainly for wood-logging 

and charcoal burning a higher distance to forest edge and/or a lower forest density potentially lead to 

more travel costs. The study by Reddy et al. states for example that deforestation rates in denser forests 

are higher compared to open forests in Bangladesh (Reddy , Pasha, Jha, Diwakar, & Dadhwal, 2016). 

Forest density is expected to have a big effect on deforestation in Upper West as most ‘semi-dense 

forest’ and ‘dense forest’ areas have been deforested in the 2014-2022 period. 

The argument of higher travel costs can also be used for the distance to the nearest river and road. This 

is why the distance to the nearest road and stream will be used as an explanatory variable for 

deforestation in this study. The distance to the nearest river and road are used often in similar regressions 

(Saha, et al., 2020; Kucsicsa & Dumitrica, 2019). 

The distance to nearest settlement and building and population density are all used as explanatory 

variables for deforestation in this study and have been used before in similar studies about deforestation 

(Ludeke, Maggio, & Reid, 1990; Saha, et al., 2020). Population growth, an indirect cause of 

deforestation in Northern Ghana, can be linked to these variables (Fagariba, Song, & Soule, 2018). It 

can be linked directly to the population density as the population density will increase as population 

grows in an area. Population also indirectly leads to more buildings and larger/more settlements as more 

people need housing.  

Poor government policies is an indirect cause of deforestation in Northern Ghana. The spatially explicit 

driving force that can be linked to this cause is the current protected forest areas. In theory these 

protected areas should protect forest areas and prevent deforestation. However government policies, like 

creating designated areas where forest is protected, are often more effective in democratic countries with 

higher levels of corruption control and protection of property right (Abman, 2018). Ghana is a flawed 

democracy with a democracy score of 6,43 in 2022, which makes it one of the most democratic African 

countries (Oluwole, 2023). However Ghana still shows signs of private media actively contributing to 

political corruption (Asomah, 2020). This makes the presence of protected areas an interesting driving 

force for Northern Ghana. 
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Figure 1: indication of spatial dispersion of (expected) driving forces 
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2.2.2 Data & Methodology 

Elevation and slope 

ASTER data was used to generate elevation and slope maps. ASTER is a Japanese instrument on the 

Terra satellite that among other things produces detailed terrain hight models (NASA, 2023). These 

detailed terrain hight models, also called global digital elevation models or GDEM, were downloaded 

from NASA Earthdata. The GDEM images from ASTER have a spatial resolution of 30 meters and are 

created from the automatic processing of the entire ASTER level 1a archive of scenes between the 1st of 

march 2000 and 30th of November 2013 (Japan ASTER Science Team, 2023). To cover the entire study 

area six GDEM images were downloaded and combined into a single raster using ArcGIS’ ‘mosaic to 

new raster’ tool.   

The elevation raster that is used in the regression consists of the raw data from the GDEM raster from 

ASTER. The slope raster was computed from the GDEM raster using ArcGIS’ ‘Slope’ tool. Both the 

slope and elevation raster layers were converted to integers to minimize the necessary computing power 

for the regression.  

Distance to nearest road 

To calculate the distance to the nearest road for each pixel the Ghana Road shapefile from the world 

bank data catalogue was used. The shapefile contains the roads in vector format and also contains the 

surface type and condition for each road (The World Bank, 2023). The dataset has been updated last the 

25th of July 2017. 

To generate a raster that contains the distance from each cell to the nearest road and river/stream the 

‘Euclidian distance’ tool in ArcGIS was used. This tool take a vector data layer as input and creates a 

raster with values for the distance to the closest vector feature for each cell. The deforestation map from 

paragraph 3.1.1 was used to define the cell size and extent of the images to make sure the whole study 

area is covered. 

Forest density and distance to forest edge 

The forest cover maps from 2014 and 2022, previously discussed in paragraph 2.1, were to determine 

the forest density and the distance to forest edge. The raw data from the forest cover maps will be used 

for the forest density. This raster consists of three classes (1-3): ‘dense forest’, ‘semi-dense forest’ and 

‘sparse forest’. It only contains three classes instead of four because only forested areas will be included 

in the regression analysis. 

The forest edge in Savannah forests is not very clear. A single ‘no forest’ cell of 30x30m does not 

indicate the edge of a forest zone but is often surrounded by forested cells. For this reason three ‘forest 

edge’ rasters were created. To do this the forest cover maps were firstly converted to polygons using 

ArcGIS’ ‘raster to polygon’ tool. These polygons were then filtered to only contain areas in the ‘no 

forest’ class. After that these polygons were filtered into three layers with all a different minimum area: 

1 cell (900 m²), 1 ha and 1 km². Finally, using the ‘Euclidian distance’ tool in ArcGIS three distance 

rasters were computed with the same parameters as before. Which of the three rasters explains 

deforestation will be tested in the regression. 

Distance to nearest river 

To calculate the distance to the nearest stream the Rivers of Africa shapefile from the Food and 

Agriculture Organization of the United Nations was used. The shapefile contains Africa’s rivers and 

streams including some other information about each stream/river (FAO, 2023). The dataset has last 

been updated on the 13th of May 2022. This dataset was then converted to a distance raster using the 

‘Euclidian distance’ tool in ArcGIS with the same parameters as before. 
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Population density and distance to nearest settlement 

Global Human Settlement Layer data will be used for the population density and the distance to the 

nearest settlement and building, more specifically the population grid from the years 2015 and 2020. 

The grids get updated every 5 years which means that the grids do not match the exact years from the 

deforestation maps. The grid from 2015 will be used with the 2014 deforestation map and the grid from 

2020 will be used with the 2022 deforestation map. The population grids were downloaded from the 

joint research centre data catalogue of the European commission and depict the distribution of human 

population, expressed as the number of people per cell (Joint Research Centre, 2023). 

The population density was then computed from the population grid using the ‘Focal statistics’ tool in 

ArcGIS. Using this tool the sum of all people in the surrounding 1 km², 5 km² and 10 km² was computed 

for each cell of the deforestation raster. Which of these different areas, 1 km², 5 km² or 10 km² explains 

deforestation best will be tested in the regression. 

For the distance to the nearest settlement the population grid was firstly converted to polygons using 

ArcGIS’ ‘raster to polygon’ tool. This polygon layer was then filtered to only contain polygons that have 

more than zero people living in them. The polygons in that layer that are within 100 meter of each other 

were then aggregated into one polygon using the ‘Aggregate polygons’ tool. This layer shows all urban 

areas including the amount of people living in each urban area. This layer was then filtered into four 

different layers containing the settlements with a minimum of 100, 500, 1000 and 5000 inhabitants. 

Finally, using the ‘Euclidian distance’ tool in ArcGIS four distance rasters were computed with the same 

parameters as before. Which of the four rasters explains deforestation will be tested in the regression. 

Protected areas 

The data on protected areas in Upper West has been retrieved from the Food and Agriculture 

Organization of the United Nations. The World Database on Protected Areas from 2020 was used. 

This dataset contains all protected areas in the world containing the year the areas started being in a 

protected status. All protected areas in Upper West have been protected for multiple decennia, which 

means the same dataset can be used for both 2014 and 2022. The polygon dataset was then converted 

to a raster containing values of 0’s and 1’s. A 1 corresponds to a cell that is in a protected area and a 0 

corresponds to a cell that is unprotected. 

Distance to the nearest building 

For the distance to the nearest building the GHS built-up surface layer was downloaded from the joint 

research centre data catalogue of the European commission. The GHS built-up surface layer depicts the 

distribution of the built up surface (Joint Research Centre, 2023). It shows this as the fraction of a cell 

that is covered by buildings, with buildings being ‘any roofed structure erected above ground for any 

use’ (Joint Research Centre, 2023).  

The same methodology of the distance to nearest settlement will be used to compute the distance to the 

nearest building. The polygon layer the built-up surface layer however will be filtered to only contain 

polygons with a higher value than zero, which means it contains all cells that are built-up. 

For the variables distance to nearest building, settlement, river, forest edge and road the logarithm of the 

values has also been computed. Distance often decays non-linearly and the distance decay function often 

shows more resemblance to the logarithmic function (Hammond & Youngs, 2011; Vries, Nijkamp, & 

Rietveld, 2004). For this reason both the linear and logarithmic effect of all variables related to distance 

will be tested in the regression to determine what variable explains deforestation best.  
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2.3 REGRESSION 
For the regression all variables were compiled into a .csv file. To do this the deforestation raster was 

firstly converted into points, each point representing a raster cell. Then all the values from the rasters of 

the variables are joined to the points using ArcGIS’ ’Extract multi values to points tool’. Finally the 

attribute table of the points was exported to a .csv file.   

A logistic regression will be used to explain deforestation. A logistic regression is a regression that is 

often used for classification and predictive analysis (IBM, 2023). The outcome of a logistic regression 

is a probability, in the form of a number between 0 and 1. In this case 1 corresponds to deforestation 

and 0 to no deforestation. In a logistic regression, the probability of deforestation is considered to be a 

function of the explanatory variables and is defined by the logistic function (Kucsicsa & Dumitrica, 

2019): 

𝑝 = 𝐸(𝑌) =  
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ….  𝛽𝑛𝑋𝑛)

(1 +  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ….  𝛽𝑛𝑋𝑛))
 

In this function p is the probability; E(Y) is the expected value of the dependent variable; 𝛽0 is the 

constant to be estimated by the regression; 𝛽1, 𝛽2 … 𝛽𝑛 are the coefficients to be estimated for each 

independent variable (𝑋1, 𝑋2 … 𝑋𝑛) (Kucsicsa & Dumitrica, 2019). The logistic regression from the 

python module statsmodels will be used. Statsmodels has the ability to show a summary of the 

regression, containing metrics like the R-squared, confidence interval and p values. This is why it is 

preferred in this study over other popular python modules like sci-kit learn’s logistic regression. 

As previously discussed, the different options for the variables ‘population density’, ‘distance to nearest 

settlement’ and ‘distance to forest edge’ have to be tested to prevent multicollinearity in the regression. 

Each option of these variables will be used in a separate regression with the dependent variable 

deforestation. The option that best explains the deforestation, indicated by the highest R-squared, will 

be used in the final regression.   

The final regression will be computed and the effects of all variables will be reviewed. To get an easier 

comparison of the relative effect between variables another regression will be developed using the 

standardized version of all explanatory variables (Bavaghar, 2015; Etter, McAlpine, Wilson, Phinn, & 

Possingham, 2006) 

Using the logistic function and the coefficients obtained from the regression the probabilities for all 

raster cells will be calculated using the ‘raster calculator’ tool in ArcGIS. For this the raster data from 

2022 will be used to finally create a probability map for 2022. This probability map will show the 

probability of deforestation in 2022 based on the spatial patterns of the 2014-2022 period.  
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3 RESULTS 

3.1 FOREST COVER CHANGE 
 

 

The forest cover change map between 2014 and 2022 has been computed from the forest cover and is 

shown in Figure 2. The north of the Upper West Region shows mostly light afforestation. On the other 

hand a big part of the southeastern part of Upper West has experienced deforestation. Most of this area 

experienced light deforestation, some medium deforestation is however concentrated in the far 

southeastern corner and in the middle of Upper West.  

Figure 2: Forest cover change in Upper West between 2014 and 2022. 
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The exact amount of areas that experienced afforestation or deforestation are shown in Table 3. 38,9% 

or 6890,5 km² of Upper West did not experience change, which means that 61,1% did experience 

change. Most of these areas experienced deforestation, 6570 km² or 37,1% in total. Heavy deforestation 

hardly happened in Upper West, while 33,7% or 5967 km² of Upper West experienced light 

deforestation  and 3,4% or 597 km² experienced medium deforestation. A total of 23,9% of Upper West 

experienced afforestation. This was mostly light afforestation, as hardly any areas experienced medium 

and heavy afforestation with a total of 0,52% or 90 km². A total of 4142 km² or 23,4% of Upper West 

experienced light afforestation. Both afforestation and deforestation happened abundantly in Upper 

West between 2014 and 2022, however deforestation was more common than afforestation.  

 

3.2 REGRESSION 
 

The logistic regressions on the ‘population density’ variables concluded that the population within the 

surrounding 10 km² of a cell explained deforestation best. The regressions of the variables showed an 

R² of 0.003, 0.007 and 0.010 for 1 km², 5 km² and 10 km² respectively. The logistic regressions on the  

‘distance to nearest settlement’ variables concluded that the distance to a settlement with a minimum of 

a 100 inhabitants best explained deforestation. The regressions of the variables showed an R² of 0.046, 

0.004, 0.005 and 0.0017 for a minimum of 100, 500, 1000 and 5000 inhabitants respectively. Finally, 

the logistic regressions on ‘the distance to forest edge’ variables concluded that the distance to a forest 

edge, where a forest edge is defined as an area of at least 1 km², best explains deforestation. The different 

thresholds for forest edge showed an R² of 0.061, 0.083 and 0.526 for 1 cell, 1 ha and 1 km² respectively. 

This means that only the population within the surrounding 10 km² of a cell, the distance to the nearest 

settlement with a minimum of 100 inhabitants and the distance to the nearest forest edge, being an 

unforested area of at least 1 km², are included in the final regression. None of the variables related to 

distance showed a significant improvement in R² as a logarithmic correlation compared to the linear  

correlation. Which means the linear variant of the variables related to distance have been included in the 

final regression. This final regression is shown in Table 4. 

The coefficient in Table 4 indicates how much the probability of deforestation changes when the 

corresponding explanatory variable increases one unit. This value is the one that is used in the 

probability map in the next chapter. All of these coefficients and all of the standardized coefficients are 

significant. The standardized coefficient shows the relevant effect of each of the explanatory variables. 

Forest density has the biggest effect on deforestation (standardized 𝛽 = -2.249) and an increase in the 

forest density causes an increase in deforestation probability. This correlation seems positive, but a lower 

forest cover class indicates a higher forest density, which makes it a negative correlation. Elevation has 

the second largest relevant effect (standardized 𝛽 = -0.247). The effect is negative indicating that a 

higher elevation negatively impacts deforestation probability. Distance to forest edge (standardized 𝛽 = 

-0.176) and population density (standardized 𝛽  = 0.178) have a similar effect on deforestation 
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probability. However, distance to forest edge has a negative effect on deforestation probability, 

indicating that cells that are further away from a forest edge have lower chances of deforestation. While 

population density has a positive effect on deforestation, indicating that a higher population density in 

the surrounding 10 km² of a cell leads to a higher deforestation probability. The distance to the nearest 

road (standardized 𝛽 = 0.097) and the distance to the nearest river (standardized 𝛽 = -0.016) both have 

a positive effect on deforestation probability, indicating that a cell that is further from a road/river has a 

higher chance of deforestation. However, the effect of the distance to nearest road is around 6 times 

bigger than the effect of the distance to the nearest river, which has the smallest relative effect of the 

explanatory variables. Distance to the nearest building (standardized 𝛽 = -0.085) and the distance to the 

nearest settlement (standardized 𝛽 = -0.027) both have negative effects on deforestation, indicating that 

cells that are further away from a settlement/building have lower chances of deforestation. Slope 

(standardized 𝛽 = -0.051) has a negative effect on deforestation probability, indicating that deforestation 

is less likely to occur on steeper slopes. Finally, protected areas (standardized 𝛽 = 0.063) have a positive 

effect on deforestation, indicating that a protected area a higher chance of deforestation than a non-

protected area. 
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3.3 PROBABILITY MAP 
 

Figure 3 shows the probability of deforestation for every raster cell in Upper West. The probability is 

shown as a value between 0 and 1. With values closer to 0 having a lower probability of deforestation 

and values closer to 1 having a higher probability. The highest probabilities do not show a clear pattern 

but they are mostly located in the south and east of Upper West. It is remarkable however that these 

areas are mostly areas that fall into the ‘semi-dense forest’ or ‘dense forest’ classes. Furthermore the 

areas around cities, like Wa and Tumu for example, show medium probabilities. Medium probabilities 

also appear relatively much in the southeastern corner of Upper West.  

 

Figure 3: Probabilty of deforestation for Upper West in 2022 
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4 DISCUSSION 

This study has shown that a lot of areas in Upper West have experienced a change of forest cover. The 

logistic regression has shown the value of producing location-specific logistic regression models that 

can be used for probability mapping. This is important, as probability mapping can become a very 

important tool to prevent future deforestation (Lambin, 1994). This is especially the case for Upper West 

as no similar studies have been previously conducted in this area. 

As expected forest density has a big effect on deforestation. Not many studies have previously studied 

the effect of forest density on deforestation. A study about deforestation in Bangladesh does however 

show higher deforestation rates in denser forests compared to open forests, confirming the findings in 

our study (Reddy , Pasha, Jha, Diwakar, & Dadhwal, 2016). The fact that not many studies have studied 

the effect of forest density on deforestation is likely because many studies have used the definition of a 

forest as was used by Global Forest Watch (2023). This definition has a higher forest density threshold, 

which is why Upper West has no forest according to this definition. Our study shows that the difference 

between ‘sparse forest (5-25% forest cover)’ and ‘semi-dense forest (25-50% forest cover)’ leads to a 

big difference in deforestation probability. These are the two most common forest cover classes in Upper 

West, and would both not be classified as forest in the definition by Global Forest Watch. A reason why 

most other studies do not include forest density into their logistic regression could be that the difference 

in density in forests that are overall denser does not have a significant effect on deforestation. 

A higher elevation and a sleeper stope cause lower chances of deforestation. This negative effect of 

slope is confirmed by a number of other studies (Kucsicsa & Dumitrica, 2019; Bavaghar, 2015; Gayen 

& Saha, 2017). The effect of elevation is not always negative in other studies. The study by Arekhi for 

example does show a negative effect of elevation on deforestation (2011). However, a number of other 

studies also show a positive effect of elevation on deforestation (Kucsicsa & Dumitrica, 2019; Gayen & 

Saha, 2017). The effect of elevation on deforestation is therefore very location dependent.  

All variables that relate to population growth have positive effects on deforestation, meaning that more 

population leads to more deforestation. These variables are distance to nearest settlement and building 

and population density. This positive effect was expected as population growth is one of the biggest 

indirect causes for deforestation in Northern Ghana (Fagariba, Song, & Soule, 2018). Other studies have 

also shown positive effects of population related variables on deforestation (Arekhi, 2011; Kucsicsa & 

Dumitrica, 2019; Gayen & Saha, 2017). Distance to rivers and roads have positive effects on 

deforestation. This is unexpected as a higher distance to a river or road increases travel costs, which 

makes it less profitable. No real explanation for this positive effect was found, but the effect of these 

variables is only minimal with both standardized coefficients being lower than 0.100. Distance to forest 

edge does has a negative effect on deforestation, this was expected as deforestation is not likely to 

randomly happen in the middle of a forest. This negative effect for distance to forest edge was also found 

by a number of other studies. 

A striking result from this study is that protected areas have a higher chance of deforestation. Protected 

areas not being effective in Upper West does however confirm the findings of Fagariba et al., who stated 

that poor government policies are an important indirect cause of deforestation in Northern Ghana. 

Fagariba et al. also state that government policies regarding protecting forests are most effective in 

democratic countries with higher levels of corruption control and protection of property right. Ghana is 

one of the most democratic countries in Africa with a democratic index of 6.43 (Oluwole, 2023), but is 

still quite far behind western countries like the Netherlands and Germany with democratic indeces of 

9.00 and 8.80 respectively (Economist intelligence , 2023). On top of that Ghana also shows signs of 

private media actively contributing to political corruption (Asomah, 2020). Even though poor 

government policies partially explain why protected areas in Upper West are uneffective, it is unlikely 

that this results in deforestation to be more likely in protected areas. It is likely that this is caused by 
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something else that was not included in the regression. For example, the thickness or type of trees could 

make it more profitable to cut down trees in protected areas. After the final regression a cross-variable 

between forest density and protected areas was added to better inspect the interaction effect between 

these two variables, as this could possibly give more insight into the positive effect of protected areas. 

This interaction effect showed that deforestation probability is especially high for the ‘sparse forests’ 

class within protected areas (standardized 𝛽 = 0.759*). Which shows that the positive effect of protected 

areas was mainly caused by the less dense forests within protected areas. Including this cross-variable 

the ‘semi-dense forests’ class shows a slightly smaller positive effect (standardized 𝛽 = 0.050*) when 

in a protected area compared to the regression without the interaction effect. The ‘dense forests’ class 

even shows a significant negative effect (standardized 𝛽 = -0.6604*), although there are hardly any areas 

in Upper West that fall into the ‘dense forests’ class.  

The forest cover change map in paragraph 3.1 showed light afforestation in the north of Upper West. 

Experts on the study area from Sommalife did not expect afforestation in these areas however. The forest 

cover change maps were generated using satellite imagery from the years 2014, 2018 and 2022, which 

has been described in detail in a technical report (van 't Hof, 2023). The forest cover maps of 2014 and 

2018 showed a sudden change from ‘no forest’ to ‘sparse forest’ in this four year period. The 2018-2022 

period did not show much change in this area, which possibly means there might be some inaccuracies 

in the 2014 forest cover map. These inaccuracies are described in the technical report, but it is important 

to note that the afforestation in the north could possibly be caused by inaccuracies here as well.  

An R-squared of 0.534 of the regression is fairly high when compared to other studies using logistic 

regressions to predict deforestation. Bavaghar retrieved an R-squared of 0.383 for example in a logistic 

regression about deforestation in Iran (2015). Gayen & Saha however retrieved an exceptionally high 

R-squared of 0.959 in logistic regression about deforestation in the Pathro river basin in India (2017). 

An R-squared of 0.534 indicates that deforestation in Upper West cannot be fully explained by the 

explanatory factors used in this study. This is expected as lot of other (not spatially explicit) variables 

also potentially have effects on deforestation. However, the logistic regression can still be used to make 

predictions on future deforestation with a satisfactory level of confidence.  
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5 CONCLUSION & RECOMMENDATIONS 

Present deforestation is not only a burning issue in Upper West but also in the rest of the world. This 

study successfully mapped Upper West’s forest cover changes for the past decade and showed that 

deforestation mostly happened in the southeastern corner of the region. A literature review revealed the 

forces that were expected to drive the deforestation in the area and the expected effect of these forces. 

A logistic regression confirmed the expectation that forest density plays a big role in Upper West’s 

deforestation, with denser forests having a significantly higher probability of deforestation. The 

regression also confirmed the positive effect of population growth on deforestation that was found in an 

earlier study. Finally the regression also confirmed that poor government policies in protecting forests 

is an indirect cause of deforestation in Northern Ghana by showing that protected areas have a higher 

probability of deforestation. A probability map of deforestation shows that areas with denser forests are 

very likely to experience deforestation in the future if current trends resume. The probability map has 

been generated from the logistic regression with a satisfactory level confidence and can be used as a tool 

to prevent future deforestation in the study area.  

To further improve the confidence behind this study it is recommended that the future forest cover maps 

of Upper West will be supported by observations in fieldwork to improve accuracies. This could either 

confirm or deny the afforestation in the northern areas of the region as the confidence in this region was 

not high. More accurate forest cover change maps also lead to a more confident regression and a better 

explanation and prediction of deforestation in the area.  

It could be very beneficial to further investigate the explanatory variable protected forests. Protected 

forests are meant to protect forests from deforestation, but it does not seem to work in Upper West. 

Research could potentially show what the exact issue is and help policymakers prevent deforestation 

more effectively.  
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